Radiative production of neutralinos

Olaf Kittel

Universidad de Granada

In collaboration: Christoph Bartels, Ulrich Langenfeld, Jenny List

LC workshop Granada, September 26-30 2011

Outline: radiative neutralino production $e^+ + e^- \rightarrow \tilde{\chi}_1^0 + \tilde{\chi}_1^0 + \gamma$

- Introduction and motivation
- Signal and background
- Beam polarization dependence, and the parameter point SPS 1a'
- Experimental study (Christoph Bartels, PhD)
- Summary and conclusions

Introduction and motivation

- Supersymmetry is an attractive model beyond the Standard Model.
- New SUSY particles have to be found at colliders.
- ILC: lightest states can be studied first.
- Discovery at colliders:

direct: **decay products** of neutralinos, charginos, sleptons (ILC) squarks, gluinos (LHC)

indirect: missing energy due to two stable LSPs (R-parity cons.)

Radiative production of neutralinos

 $e^+ + e^- \rightarrow \tilde{\chi}_1^0 + \tilde{\chi}_1^0 + \gamma$

Proceeds via selectron $\tilde{e}_{L,R}$ and Z boson exchange Signal: High energetic photon γ and missing energy

This is the lightest SUSY state to be produced!!!

Energy distribution and \sqrt{s} dependence: signal and background

SUSY parameter point SPS 1a'

Signal and background

- Signal: $e^+ + e^- \rightarrow \tilde{\chi}_1^0 + \tilde{\chi}_1^0 + \gamma$
- Background:
- SM: $e^+ + e^- \rightarrow \nu + \overline{\nu} + \gamma$ (dominant, order of 3.3 pb)
- MSSM: $e^+ + e^- \rightarrow \tilde{\nu} + \tilde{\nu}^* + \gamma$ (negligible in most scenarios)
- (theoretical) significance: $S = \frac{N_S}{\sqrt{N_B + N_S}}$ (should be at least > 1) events: $N = \mathcal{L} \sigma$
- situation at LEP:

Luminosity $\mathcal{L} \approx \mathcal{O}(100 \text{ pb}^{-1}) \Rightarrow \text{we find } S < 0.1$

• at ILC: high lumi $\mathcal{L} \approx 500 \text{ fb}^{-1}$ and polarized beams!

 \Rightarrow Will show that signal can well be observed!

 $\sqrt{s} = 500 \text{ GeV}, \ \mathcal{L} = 500 \text{ fb}^{-1}; \ (P_{e^+}, P_{e^-}) = (-0.6, 0.8), \ m_0 = 100 \text{ GeV}$ kinematical limits: $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma$ (A); $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ (dashed line); $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ (dot-dashed)

Study the benchmark scenario SPS 1a'

$M_{1/2}$	M_{0}	aneta	$Sig(\mu)$	A_0
250 GeV	70 GeV	10	+1	300 GeV

- Provides a widely studied, viable SUSY scenario:
 - allowed mass spectrum (besides LHC excluded \tilde{q} , \tilde{g})
 - compatible with constraints: BR($b \rightarrow s\gamma$), $(g-2)_{\mu}$, ρ , Ω_{CDM}
- Represents an optimal scenario for us:
 - Light neutralinos and sleptons enhance production cross section.
 - LSP is 97% bino: strong coupling to right sleptons \Rightarrow beam polarizations enhance signal AND suppress $\nu \bar{\nu} \gamma !!$

Beam polarization dependence for SPS 1a'

Theoretical significance for SPS 1a'

$$\begin{split} S &= \frac{N_{\rm S}}{\sqrt{N_{\rm S} + N_{\rm B}}} \text{ and } N = \mathcal{L} \times \sigma \\ \text{signal: } \sigma_S(e^+e^- \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma) \\ \text{BG: } \sigma_{\rm B}(e^+e^- \to \nu \bar{\nu} \gamma) \\ \text{plot for } \mathcal{L} &= 500 \text{ fb}^{-1} \end{split}$$

These results motivate to perform a detailed experimental study:

⇒ Christoph Bartels, DESY

for realistic ILC conditions $(P_{e^-}, P_{e^+}) = (0.8, -0.3)$, see (*)

Experimental study for SPS 1a'

- Study performed by Christoph Bartels and Jenny List, DESY. (DESY PhD Thesis)
- Here only short summary of results, for more details: see talk by Christoph on Tuesday.

Analysis strategy

- Observables: Photon event rate for cross section measurements
 Photon energy distribution for mass measurements
- Use different beam polarizations: coupling structure of cross section

$$\sigma = (1 + P_{e-})(1 + P_{e+}), \sigma_{RR} + (1 - P_{e-})(1 - P_{e+})\sigma_{LL}$$
$$+ (1 + P_{e-})(1 - P_{e+}), \sigma_{RL} + (1 - P_{e-})(1 + P_{e+}), \sigma_{LR}$$

- Use sample ($\gamma\nu\bar{\nu}$ + Bhabha BG) from ILD Letter of Intent studies (150 fb⁻¹, created with MC Whizard + full detector simulation)
- Create signal sample by re-weighting: $w = \frac{\sigma(\chi\chi\gamma)}{\sigma(\nu\bar{\nu}\gamma)}$
 - needed due to limited CPU time
 - to avoid statistical correlation, split the samples

Main backgrounds and cuts

reducible

- reject Bhabha scattering: tag forward e^- in beam calorimeter
- Initial state radiation (ISR) reduced by 'signal definition': 10 GeV < E_{γ} < 220 GeV, and $|\cos(\theta_{\gamma})| < 0.98$
- Reduce multi-photon and hadronic/leptonic final states: cut on exclusive energy: $E_{vis} - E_{\gamma} < 20$ GeV

irreducible

- SM $\nu \bar{\nu} n \gamma$ events (up to n = 5) : maximal track $p_T < 3$ GeV (a bit p_T necessary to allow for track overlays of beamstrahlung + $\gamma \gamma$ events)
 - \Rightarrow 70 90% of $\nu\bar{\nu}\gamma$ events selected (dep. on beam polarization), all other backgrounds negligible

Background subtraction

Example of photon spectrum for a 150 GeV LSP, corresponding to $\sqrt{s} = 500$ GeV, $\mathcal{L} = 50$ fb⁻¹, $(P_{e^-}, P_{e^+}) = (0.8, -0.3)$,

Results I: LSP Mass

- χ^2 fit of the photon energy distribution.
- $m_{\tilde{\chi}} = 97.7 \pm 0.5 (\text{stat}) \pm 2.2 (\text{sys})$
- Error determined by systematics: beam energy spectrum distorts the signal spectrum
- full difference between RDR and SB2009 beam energy spectrum assumed as uncertainty \Rightarrow important to measure beam spectrum precisely!

Results II: cross sections and coupling structure

$$\sigma = (1 + P_{e-})(1 + P_{e+})\sigma_{RR}$$

$$+(1 - P_{e-})(1 - P_{e+})\sigma_{LL}$$

$$+(1 + P_{e-})(1 - P_{e+})\sigma_{RL}$$

$$+(1 - P_{e-})(1 + P_{e+})\sigma_{LR}$$
• combination:

$$\sigma_{0} = 131\pm1.3-1.8(\text{stat})\pm3.9-5.7(\text{sys})$$
errors for $|P_{e+}| = 0.3 - 0.6$
• error determined by polarization measurement, 0.25% - 0.1%

Systematic errors and uncertainties

most relevant for cross section determination:

- beam polarization measurement $\delta P/P = 0.25\%$ to 0.1% (dominant)
- luminosity measurement $\delta \mathcal{L}/\mathcal{L} = 0.01\%$
- selection efficiency $\delta \epsilon / \epsilon = 2.0\%$

most relevant for mass and σ determination:

• beam energy spectrum + scale

Summary and conclusions $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma$

- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma$ is the lightest SUSY state to be produced.
- Cannot be observed at LEP (low luminosity, no polarized beams).
- At ILC, polarized beams enhance signal and reduce background.
- Experimental study for the ILC (Christoph Bartels, DESY):
 - cross sections and ${\tilde \chi}_1^0$ mass to be determined at the percent level
 - errors are comparable to alternative measurements
 (e.g. mass determination via edges in inv. mass distributions)
 - high positron polarization and its precise measurement: reduce statistical errors considerably (about factor of 2)

Backup slides

Dependence on \tilde{e}_R -mass for different beam polarizations

