Studying Very Light Gravitino at Future Linear Colliders

Takeo Moroi (Tokyo)

Ref:

Matsumoto and TM, PLB 701 (2011) 422

1. Introduction

One of the most important tasks of the ILC:

- \Rightarrow Precise measurement of new-physics parameters
- \Rightarrow Collider phenomenology depends on new-physics model

Today, I consider the following class of SUSY model:

- Gravitino mass is $m_{3/2} \sim 10 \ {\rm eV}$
- \bullet Stau $\tilde{\tau}$ is the NLSP

 \Rightarrow Information about gravitino is obtained using the ILC

Motivation: low-scale gauge mediation model

- Gauge-mediated model solves the SUSY FCNC problem
- Such a model is cosmologically favored

Upper bound on reheating temperature as a function of $m_{3/2}$

 \Rightarrow Information about the gravitino mass is also useful for the understanding of cosmological history

Idea: use the relation between the stau lifetime and $m_{3/2}$

$$c\tau_{\tilde{\tau}} = \left[\frac{1}{48\pi} \frac{m_{\tilde{\tau}}^5}{m_{3/2}^2 M_{\rm Pl}^2}\right]^{-1} \simeq 2 \ \mathrm{mm} \times \left(\frac{m_{3/2}}{10 \ \mathrm{eV}}\right)^2 \left(\frac{m_{\tilde{\tau}}}{100 \ \mathrm{GeV}}\right)^{-5}$$

Dominant decay mode: $\tilde{\tau} \rightarrow \tau + \text{gravitino}$

- \Rightarrow If $\tau_{\tilde{\tau}}$ is known, we can obtain information about the gravitino mass
- If $c\tau_{\tilde{\tau}} \lesssim O(1 \text{ mm})$, $\tilde{\tau}$ decays before hitting trackers
 - \Rightarrow In SUSY events, there exist $\tau\text{-jets}$ with sizable impact parameter
 - $\Rightarrow \tau_{\tilde{\tau}}$ can be determined from impact-parameter distribution [Matsumoto & TM]

2. Lifetime Determination

Impact parameter: Distance to the track from the IP

- The impact parameter is typically of the order of the largest $c\tau$ of the particle in the decay chain
- Decay length of τ -lepton: $c\tau_{\tau} \simeq 87~\mu{\rm m}$
- \bullet Impact parameter determination at the ILC: $\delta b \sim 10~\mu{\rm m}$

Dominant $\tilde{\tau}$ production process: $e^+e^- \rightarrow \tilde{\tau}^+\tilde{\tau}^-$ (+ ISR)

- $\tilde{\tau}$ decays as $\tilde{\tau} \rightarrow \tau + \text{gravitino}$
- We use hadronic decay of τ , so signal contains two τ -jets

Dominant standard-model backgrounds:

•
$$\tau\tau$$
-BG: $e^+e^- \rightarrow \tau^+\tau^-$ (+ ISR)

- WW-BG: $e^+e^- \rightarrow W^+W^- \rightarrow \tau^+\tau^-\nu\bar{\nu}$ (+ ISR)
- ZZ-BG: $e^+e^- \rightarrow Z^0Z^0 \rightarrow \tau^+\tau^-\nu\bar{\nu}$ (+ ISR)
- $\gamma\gamma$ -BG: $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-\tau^+\tau^-$

 $\Rightarrow \gamma \gamma$ -BG is eliminated by requiring $E_{\rm vis}$ is large enough

Cuts and cut statistics for $\mathcal{L} = 100 \text{ fb}^{-1}$ (using HERWIG)

- 1. The number of τ -jet = 2 & $E_{\rm vis} \ge 70 \text{ GeV}$
- 2. $|\cos \theta_{j_{\tau}}| \leq 0.85$ for both τ -jets
- **3.** $-0.95 \le \cos(\phi_{j_{\tau,1}} \phi_{j_{\tau,2}}) \le 0.25.$

4. $|\hat{\mathbf{P}}_{j_{\tau,1}} \times \hat{\mathbf{P}}_{j_{\tau,2}} \times \hat{\mathbf{p}}_{\gamma}| \ge 0.1$, if γ with $p_T > 20$ GeV exists

	Signal	$\tau\tau$ -BG	WW-BG	ZZ-BG	
Cut 1	2630	45172	3911	247	
Cut 1+2	2197	1798	911	79	
Cut 1+2+3	1316	525	362	26	
Cut 1+2+3+4	1307	116	353	26	
$m_{ ilde{ au}} = 120~{ m GeV},~\sqrt{s} = 500~{ m GeV}$					

Impact-parameter distribution of τ -jets

- $\sqrt{s} = 500 \text{ GeV}$
- $m_{\tilde{\tau}} = 120 \text{ GeV}$

• Signal: $e^+e^- \rightarrow \tilde{\tau}^+\tilde{\tau}^-$ (72 fb)

• BG:
$$auar{ au}$$
, W^+W^- , Z^0Z^0

We use χ^2 analysis to estimate the expected accuracy

$$\chi^2(\tau_{\tilde{\tau}};\tau_{\tilde{\tau}}^{(\text{trial})}) \equiv \sum_i \frac{1}{N_i^{(\text{th})}(\tau_{\tilde{\tau}}^{(\text{trial})})} \left(N_i(\tau_{\tilde{\tau}}) - N_i^{(\text{th})}(\tau_{\tilde{\tau}}^{(\text{trial})})\right)^2$$

$\tau_{\tilde{\tau}}$ can be determined when $c\tau_{\tilde{\tau}} \gtrsim 10 \ \mu m$

- \Rightarrow Uncertainty is a few % level if $c\tau_{\tilde{\tau}} \gtrsim 100 \ \mu m$
- $\Rightarrow m_{3/2}$ can be determined with the same level of accuracy

3. Summary

I discussed $\tau_{\tilde{\tau}}$ determination in low-scale gauge mediation

 \Rightarrow Impact parameter distribution is useful

$ au_{ ilde{ au}}$ (input)	$m_{3/2}$	$ au_{ ilde{ au}}$ (ILC 1- σ)
$3 \times 10^{-14} \sec$	1.1 eV	$(3.36^{+0.62}_{-0.62}) \times 10^{-14} \text{ sec}$
$3 imes 10^{-13}~{ m sec}$	3.6 eV	$(3.13^{+0.06}_{-0.15}) \times 10^{-13}$ sec
$3 \times 10^{-12} \mathrm{sec}$	11.4 eV	$(3.16^{+0.07}_{-0.17}) \times 10^{-12} \text{ sec}$
$m_{ ilde{ au}} = 120$ GeV,	$\sqrt{s} = 500$	GeV

We can use the result for the gravitino mass determination

•
$$\frac{\delta m_{3/2}}{m_{3/2}} = \sqrt{\left(\frac{1}{2}\frac{\delta\tau_{\tilde{\tau}}}{\tau_{\tilde{\tau}}}\right)^2 + \left(\frac{5}{2}\frac{\delta m_{\tilde{\tau}}}{m_{\tilde{\tau}}}\right)^2} \simeq O(1\%)$$

• Similar study is challenging at the LHC, because the velocity distribution of $\tilde{\tau}$ is hardly understood at the LHC

Backup

Measurement accuracy of the stau lifetime

