

Muon Background Mitigation

Mark Thomson University of Cambridge

This Talk:

- CLIC Timing Strategy
- **2** Beam Halo Muons
- **B** Software Mitigation
- Impact on Physics
- **5** Conclusions

- **★** Based on trigger-free readout of detector hits all with time-stamps
- **★** Assume can identify t0 of physics event in offline trigger/event filter
 - define "reconstruction" window around t0

····

★ Hits within window passed to track and particle flow reconstruction

Subdetector	Reco Window	Hit Resolution	
ECAL	10 ns	1 ns	← Integrate over most o bunch train in HCAL barrel
HCAL Endcap	10 ns	1 ns	
HCAL Barrel	100 ns	1 ns	
Silicon Detectors	10 ns	10/√12	
TPC (CLIC_ILD)	Entire train	n/a	

★ 1.2 TeV reconstructed background from $\gamma\gamma \rightarrow$ hadrons

Mark Thomson

LCWS 2011, Granada

- ★ Simulated events with entire bunch train of beam halo muon background using files from Lawrence Deacon with spoilers
 - conservatively assumed 5 muons/BX (1 + safety factor 5)
 - full Geant 4 detector simulation
 - full high granularity particle flow reconstruction

In 150 ns from start of bunchtrain:
ECAL

Total = 1.5 TeV (54k hits)
Barrel = 0.8 TeV (18k)
Endcap = 0.7 TeV (36k)

HCAL

Total = 10.8 TeV (128k hits)
Barrel = 5.3 TeV (32k)
Endcap = 5.5 TeV (96k)

From entire bunch train, 5 muons per BX Average energy deposition (per bunch train:

13.2 TeV

In-time Energy Deposit

- **★** Only hits in calorimeter readout windows:
 - ECAL integrates over 10 ns
 - HCAL endcap integrates over 10 ns
 - HCAL barrel (Tungsten) integrates over 50 ns
- **★** 5 muons per BX in time with assumed calorimeter readout

Offline timing cuts

★ Apply timing cuts to "offline" reconstructed clusters

- "Tight" PFO Selection
- Time cuts: require cluster within 1 2 ns of physics BX

★ 5 muons per BX in time with O(1-2 ns) time cuts

3 Software Mitigation

- Implement algorithms in Particle Flow Reconstruction to remove "clusters" consistent with being from beam halo muons
 - Only uses shape information
 - Algorithm is run deep down in reconstruction chain
 - Quite sophisticated approximation to realistic pattern recognition

- **★** Simulated 10000 WW-> qqµν events at 1 TeV
 - 500 GeV W-> qq
 - Overlay full bunch train of beam halo muns
 - Reconstruct event using 10/50 ns time windows in calorimeters

Tight Timing Cuts

Apply tight timing cuts 1-2 ns timing cuts on cluster time

5

With modified reco.

- ★ Two effects
 - 30 GeV of energy in clusters from beam halo muons (mainly Brems)
 - Energy of reconstructed jets also biased "pick" up hits from muons ~30 GeV
 - Patrec could be improved: conservative estimate of impact

Impact on W Reconstruction

★ W reconstruction

- Remove muon
- Force remainder of event in to 2 jets using k_T algorithm, R = 0.5
- Plot di-jet mass resolution
- Compare full reco no background, to full reco with background
- For comparison look at impact of gamma gamma → hadrons

Impact on W Reconstruction

- ★ Compare impact of 5/BX to 1/BX
 - Beam halo background at level of 1 muon/BX is acceptable
 - "Safety-margin" of 5/BX is not safe from point of view of physics
 - PatRec could be improved but already quite sophisticated

6 Conclusions

- ★ The impact of the muon background can be greatly reduced in software utilising highly granular detector
- ★ Beam halo muon background at level of 1/BX is survivable
- ★ At level of 5/BX physics, performance of the detector is compromised
- ★ Ideally would look to design machine for beam halo background at level of 0.1-0.2 per BX (allows factor 10 safety margin)
- ***** Improved reconstruction could help further
 - but not easy