

Baseline Damping Ring Lattice Design Status

Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences and Education LCWS11 27 September 2011

DTC02 Layout (D.L.Rubin)

Arc Cell - FDBDF

DTC02 Lattice Functions

RF Cells

Extraction Straight

27 September 2011 LCWS11

Injection Straight

Circumference-Changing Chicane

Wiggler Cells

DTC02 Parameters

	10 Hz(Low)	5 Hz (Low)	5 Hz (High)
Circumference [km]	3.23868	3.23868	3.23868
RF frequency [MHz]	650	650	650
$\tau_x^{\prime}/\tau_y^{\prime}$ [ms]	13.5	24.1	24.1
τ_{z} [ms]	6.7	12.0	12.0
σ _z [mm]	6	6	6
$\sigma_{_{\delta}}$	0.134%	0.11%	0.11%
α _p	3.3 X 10 ⁻⁴	3.3 X 10 ⁻⁴	3.3 X 10 ⁻⁴
γε _x [µm]	4.6	5.4	5.4
RF [MV] (12 cavities) Total/cavity	19.7/1.64	14 /1.17	14/1.17
ξ_x / ξ_y	-50.9/-44.1	-51.3/-43.3	-51.3/-43.3
Wigglers: Ncells@B[T]	30@2.1	27@1.5	27@1.5
Energy loss/turn [MeV]	8.0	4.5	4.5
Sextupoles	3.34/-4.34	3.34/-4.23	3.34/-4.23
Power/RF coupler @400mA [kW]	267	150	300

The lattice can accommodate 16 RF cavities

If we assume 12 cavities then:

Voltage/cavity in 10 Hz mode is 1.64 MV

Power/coupler in 5 Hz, high power mode is 300 kW

Dynamic Aperture 5 Hz

Periodic type wiggler model, includes vertical focusing and cubic nonlinearity

Dynamic Aperture 10 Hz

Periodic type wiggler model, includes vertical focusing and cubic nonlinearity

	Length [m]	Strength	Number
Arc Dipoles	3	2.28 kG	150
Chicane dipoles	1	2.68 kG	28
Other dipoles	2	< 2.28 kG	4
Arc Quadrupoles	0.6	< 0.6 m ⁻²	450
Quadrupoles in dispersion suppressor and straights	0.3	< 0.55 m ⁻²	211
Sextupoles	0.3	< 4.34 m ⁻³	600
RF cavities	3	< 1.64 MV	12
Wigglers	2.1	2.16 T	60

Damping Wiggler Redesign

Period reduced from 32 to 30 cm and number of poles increased from 12 to 14.

Gap reduced from 8.64 cm to 7.62 cm. Peak field increased from 2.0 to 2.16 T.

Wiggler Field Analytic Form for Symplectic Tracking

A Magnetic Field Model for Wigglers and Undulators, , PAC 2003, D. Sagan, J.A. Crittenden, D.L. Rubin and E. Forest

Work at Cornell directed towards:

- Implementation of mitigation recommendations into the

vacuum chambers

- Need chamber profiles for next round of physics simulations
- Need chamber and system conceptual design for costing

Wiggler Chamber Concept I

We are considering a scenario where 2 wigglers with a quad in center are assembled as a unit and then installed.

This would reduce the number of electrode chambers required.

Aluminum Dipole Chamber Concept

Radial inside of ring

Radial outside of ring

Vacuum System Summary

Tasks underway

- Concepts for drift, quadrupole, sextupole chambers in arcs
- Pumping requirements for straights
 - Will in-situ bakeout of chambers in the straights be required?
 - What are our options?
- Full ring wall profile for EC simulations

Tasks to do

- Photon stop & masks conceptual design in wiggler region
- Full system concept for costing

DRIFT CHAMBER