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The Test Beam Line

TBL is the first prototype of the
CLIC decelerator.

One of its goal is to demonstrate
stable beam transport for a heavily
decelerated beam.

For more: “TBL status and
results”, S. Döbert, 29 Sep 11:30

TBL optics

8 FODO cells,

4 PETS in the first 2 FODO cells. Additional 4 PETS soon...

one independent power supply per quadrupole allowing different gradient
tapering scheme and phase advance,

one BPM per quadrupole and one H/V movers per quadrupole for the
maximum steering flexibility,
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TBL beams with εn 150 mm mrad target

1x combination: 120 MeV, 3.5 A at 3 GHz,

4x combination: 120 MeV, 14 A at 12 GHz,

8x combination: 120 MeV, 28 A at 12 GHz.
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Figure: TBL optics, µFODO = π/2.
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Figure: Induced beam energy spread.
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Steering is important

to test the CLIC BBA algorithms in CTF3.

for TBL operation to improve the beam stability.
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Figure: Ideally aligned quadrupoles.
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Figure: Misaligned quad’s (σq = 25 µm).
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Figure: Envelope vs misalignment.
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Figure: Misaligned quad’s (σq = 25 µm).
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How we proceeded for the optics study...

We started by studying the response matrix measurements: this is usually done
with uncombined beam (trade-off between stability and BPM SNR ratio).
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The linear optics is well under control...

good agreement between measurements and simulations

Movers, BPMs, kickers polarities are ok (H and V planes).
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A lot of (parasitic) information on...

jitter of the incoming orbit: ≈ 0.5/0.1 mm rms H/V

current stability at the TBL entrance/exit (≈ 2%).

SVD analysis to pin down betatronic modes.

BPM precision estimation based on SVD.
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Beam conditions: the beam is our instrument

Orbit jitter and Energy jitter due to klystron (see T. Pettersson’s talk)

Emittance target of εn = 150 mm mrad.

Hardware performance for measuring and correcting the orbit

Bpm resolution (see S. Doebert’s talk).

Mover target resolution 5 µm.

We do not start from a pre-aligned machine

Quadrupole magnetization.

Data acquisition systems.

Thanks to the CTF3 team for the work done/foreseen to improve the stability.
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Measurement description

3 mover steps (± 500µm).

2 quadrupole currents (± 10%).

20 pulses at each step.

Figure: TBL schematic.
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Figure: BPM measurement.
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Synchronization

In order to analize properly the data, the pulses must be synchronized.
Normally 80% of the pulses are synchronized.

SVD analysis

The 1st and 2nd singular values may represent betatronic oscilations.
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Collected measurements

MAGNET OFFSET [µm]
DX [µm] DY [µm]

QFR200 413±50 180±126
QDR240 626±36 813±136
QFR300 870±303 826±405
QDR340 1150±620 366±85
QFR400 460±31 217±70
QFR440 305±67 285±43
QFR500 990±353 583±152
QFR540 237±136 412±238

Average offsets:

Horizontal plane: Vertical plane
x0=631 ± 200 µm y0=460 ± 160 µm
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Iteration process

NOTE: The mover range and the magnet current variation are optimized in order
improve the measurement resolution.

 3400

 3600

 3800

 4000

 4200

 4400

 4600

 4800

 0  1  2  3  4  5  6  7

H
 p

os
iti

on
 [µ

m
] 

Iteration

Mag Centre
Average

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0  1  2  3  4  5  6

V
 p

os
iti

on
 [2

.6
  µ

m
] 

Iteration

Mag Centre
Average

Figure: Iteration process.

��
���

�
�

�
�

�
�

�
�
��

r Current change 20%

Final offsets:

Horizontal plane:
x0=252 ± 106 µm

Vertical plane:
x0=194 ± 26 µm

eduardo.marin.lacoma@cern.ch, guido.sterbini@cern.ch LCWS11, TBL optics studies and steering 13/ 18



Introduction
Quadrupole Shunting

The 1-to-1 steering
Conclusions and plans

Methods
Results, limitations and possible improvements

The 1-to-1 steering in TBL

Applying to CLIC decelerator the Quadrupole Shunting method is time
consuming and HW limited: 1-to-1 is envisaged as a 1st BBA step.

In principle, assuming that we know the linear response of the
mover/BPM and assuming the BPM signal is due only to the movers
misalignment, we can center the orbit wrt the BPM center.

The 2nd stage of the alignment is to minimize dispersion (DFS, not yet
applied in TBL).

I present here results and limitations of the 1-to-1 steering in TBL

1 linear model of the system → ∆XBPM = R ×∆XQ

2 identification of the system → ∆XQ = R+(nSV )×∆XBPM

3 correction → XNEW
Q = XOLD

Q −∆XQ
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Response matrices...

The agreement between the model and the measurements is good and mainly
limited by the precision of the response matrix measurements (dominated by the
incoming beam non idealities).
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An example of orbit before alignment. . .

After the alignment we expect to observe a similar signals on the first BPMs.
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How do we chose the parameter nSV of R+(nSV )?

In general is driven by the BPM precision, in TBL is driven by the movers range.
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The incoming mis-steering is dumped by the correction.

The damping length depends on the nSV . In our case is nSV = 9.

Before After (last 11 BPMs)
Mean [mm] -0.90 0.22
RMS [mm] 1.65 0.31
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On the V plane...

RMS reduced up to the mover that is blocked after we see the induced oscillation.

Before After (first 10 BPMs)
Mean [mm] -0.69 -0.07
RMS [mm] 1.30 0.61
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Conclusions

TBL is a unique opportunity to test the CLIC decelerator beam physics:
with 16 PETS installed a BBA algorithm is required to transport the 28 A
beam.

The measured linear optics agrees with the model within the
measurements errors dominated by the machine jitter.

An iterative quadrupole shunting method to center the quadrupole on the
beam a precision of 106/26 µm in the H/V plane.

The 1-to-1 steering allows to reduce the RMS orbit from
H plane: 1.65→ 0.31 mm
V plane: 1.30→ 0.61 mm.

There still a long way to go: the goal is the DFS.

Plans

To stabilize the incoming orbit slow drift and center the beam orbit with a
orbit feedback in front of the TBL FODO lattice.

To repeat the Quadrupole shunting and the 1-to-1 steering after the new
pre-alignement of the line.

To test the DF steering.
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