

Status of the AHCAL engineering prototype

Mark Terwort LCWS11

Granada, September 28th, 2011

- Tiles
- First SPIROC2b tests
- New front-end board
- DAQ

The AHCAL physics prototype

The engineering AHCAL prototype

Development of scalable LC detector based on successful experience with physics prototype

Scintillating tiles

- Signal sampled by scintillating tiles
 - \rightarrow 3x3x0.3cm³, 2592 tiles per layer
- First version of PCB/tiles:
 - ♦ Gain/Noise ~ 4
 - MIP/Noise ~ 30 (in high gain mode, 2 GeV electrons)
- No large sample of tiles available at DESY yet
 - → ~800 available at ITEP
 - → Tests and selection ongoing
 - → ~600 new tiles to be sent to DESY soon
 - → Equip 4 new PCBs

LED calibration system

System task:

- SiPM gain calibration (single pixel spectra)
- SiPM saturation (limited number of pixels)

Wuppertal solution:

- Light directly coupled into tile by 1 integrated LED per channel
- Light output equalization via C1 C3
- New design implemented in new HBU2 and will be tested extensively

Prague solution:

- Light coupled into tile by notched fiber
- Mechanical integration difficult
 - → First full layer tests soon at DESY

The readout chip - SPIROC

Specific chip for SiPM readout:

 Input DAC for channel-wise bias adjustment (36 channels)

Designed for ILC operation:

- Power pulsing → 25µW/ch
- Dual-gain setup per channel
 - → high gain/low gain ~ 10
 - → 25fF 1575fF per channel
- Auto-trigger and auto-gain mode
- Time stamp (12-bit TDC)

Although SPIROC3 is in the pipeline we will use SPIROC2b for first tests with large setups and testbeam!

Placement of components in PCB cutouts

- → 500µm/layer
- → 50mm in total!

The readout chip - SPIROC

- SPIROC2b integrated in old HBU for first tests
 - → linearity, preamplifier gains and TDC
- We see first signals for new HBU!
 - → Improved dynamic range visible!
 - → Slow control programming, data taking with external trigger and readout works

SPIROC2b – Time measurements

- T3B measured radial development of shower in time in one row of last layer
 - → Repeat measurement with full layer or even multiple layers
- SPIROC2b measures time in auto-trigger mode relative to bunch clock
 - → 2 ramps to reduce deadtime due to ramp reset
 - \rightarrow ILC mode = 200ns ramp, testbeam mode = 5µs ramp (less dead time)
 - → Investigate time resolution to optimize ramp slopes (and lengths)

SPIROC2b - TDC (ILC mode)

- First tests of TDC ramps in SPIROC2b show promising results
- ◆ Resolution in ILC mode: ~250-350ps (dominated by linearity)
- The 2 ramps have different slopes/heights in ILC mode
- A few aspects will change in SPIROC3, but we have to use SPIROC2b!

SPIROC2b – TDC (ILC mode)

- No correlations visible between ADC and TDC measurements
- Resolution in ILC mode limited by linearity (~1ns)
 - → Linear fit reveals clear structure
 - → Fit of 2 linear functions improves resolution (~300ps)
 - → What is the most reasonable measurement/fit strategy?

SPIROC2b – TDC (testbeam mode)

- Multiplexer deadtime very small in testbeam mode (longer ramp)
- Resolution in testbeam mode: ~3ns
- Very small differences for the two ramps in testbeam mode
- Resolution of ~1ns possible by optimizing ramp slopes (and dynamic range)
 - → Tests with 1.25µs ramp promising

New HCAL Base Unit (HBU2)

- 4 new HBUs in DESY lab
 - → 144 channels equipped with scintillator tiles, LEDs, SiPM readout, 4 ASICs
 - → No cooling, power pulsing
 - \rightarrow 1 layer = 6x3 HBUs
 - \rightarrow ~30.000 in HCAL barrel
- 1 HBU2 connected to DAQ modules for first tests
 - → so far fully functioning!
- 6-8 HBU2s till end of year
 - → New SiPM production at ITEP to be started
- Go to DESY testbeam soon

Data acquisition

Data acquisition

- All components working at DESY
- 2 options:
 - Labview based DAQ for SPIROC2b tests and single HBU2 testbeam (finished)
 - XDAQ for full detector operation
 - → to be started
- Currently 3 DIFs from NIU
 - → Duplicate setups for more students, for Wuppertal, testbeam etc.

Summary and outlook

- HBU2 under test at DESY, so far fully functioning!
- First SPIROC2b tests in (old and new) HBU environment
 - Channel-wise preamplifier gain setup works
 - TDC measurements show promising results, both in ILC and testbeam mode
 - First successful data taking in HBU2 environment
- Tiles to be sent to DESY soon.

To do

- System tests of calibration system
- Plenty of SPIROC2b tests in HBU2 environment
- Assembly of multi-HBU2 setup (~6 HBU2s at end of the year)
- DAQ development
- etc. etc.

Selection of new tiles

- ITEP proposed selection criteria for new tiles
 - HV such that we have 13 pixels for Sr90 signals
 - Gain larger than 450000 for 140ns gate, >400000 for 100ns gate (~50ns shaping)
 - Noise at 0.4 MIP smaller than 500Hz → <100Hz at 0.5 MIP
 - Cross talk less than 20%
 - Number of pixels at maximum light >700

SPIROC2b

Power pulsing

Autotrigger performance

- Autotrigger: mode of ILC operation
- Compare fast shaped signal with predefined (10 bit) DAC threshold
- Set threshold to minimize noise hits and maximize MIP efficiency

Autogain performance - Linearity

- Autogain: automatically switch between high gain and low gain mode
- Compare signal with predefined (10 bit)
 DAC threshold
- Good linearity, but still slightly depends on:
 - Amplitude
 - Distance to threshold

Autogain performance - Thresholds

- Autogain: automatically switch between high gain and low gain mode
- Compare signal with predefined (10 bit)
 DAC threshold
- Similar performance as for autotrigger

AHCAL layer – cross section

Abbr.	Name
DIF	Detector Interface Board
CALIB	Steering for LED calibration
CIB	Central Interface Board
HBU	Front-end board

- Compliant with steel and tungsten options
- Redesign and production of components almost finished