Operation and Calibration of the CALICE Tungsten HCAL

Shaojun Lu

shaojun.lu@desy.de

LCWS11 Granada, 28th September 2011

Highly Granular WAHCAL Prototype

materials Tungsten

layers 38

interaction length $\sim 4.8 \lambda_I$

channels 7608

cell size (cm²) 3x3 to 12x12

light yield ~13 pixel/MIP

S/N ~10

Tungsten HCAL Test Beam

tail catcher: installed for higher energy program

Tungsten HCAL

- 2011 WHCAL test beams at SPS H8
- Three test beam periods:
 - 7 days in June: Low energy program 10-50 GeV
 - 7 days in July: High energy program 50-300 GeV with tail catcher
 - 5 days this week: Complete high energy program and possible add tagged kaon sample

Collected Data

π-	16 energy points in range from 10 to 300 GeV	11.4 M
π^+	5 energy points in range from 10 to 50 GeV	2.7 M
e	6 energy points in range from 10 to 40 GeV	1.2 M
μ	large 80x80 triggers	2.1 M
	30x30 triggers, in lower 1/3 of detector area	0.3 M

• Total 17.7 M events for beam + calibrations runs

Operation Experience

Testbeam:

- Active layers are operated since 2006 (5 years)
- Number of dead channels
 - mainly due to bad soldering connections to SiPM pins
- Only handful of "cassettes" after all transportations
- Readout electronics: few FE boards exchanged over the years, mainly due to lose capacitors after transport
 - different electronics gain ratio expected within 5-10%
- This talk will focus on the calibration studies

Noise Check

0

10

15 run

5

FNAL 2008/9: different high voltage

Calibrations: InterCalibration

- Electronics mode gain ratio
 - Two models of readout chip used for data taking and SiPM gain calibration
 - LED system used to determine ratio of cell response in the two readout models:

- Ratio of electronics gain (IC)~10
- Number dependents on SiPM recovery time

Calibrations: SiPM gain check

- Gain calibration constants has been extracted from the gain calibration dataset.
- Very good agreement observed, after temperature correction.

- gain calibration constant:
 - Efficiency round ~90% for each run
 - Different due to bad fit results
 - Few runs are 0%: the LEDs were off for those runs.
 - Total efficiency over all period: ~98%

Program for September/October run

- From 27/9 to 12/10 we have a combined CALICE run in SPS-H8
 - 27/9 to 3/10: W-AHCAL
 - 3/10 to 12/10: SDHCAL
- Program for W-AHCAL:
 - Positive charge at selected energies 50 GeV \leq E \leq 300 GeV
 - Muons with 30 x 30 cm² scintillator in 9 positions.
 - Large samples of events (10⁶) at 50GeV, 60GeV and/or 80GeV
 - Try to get tagged Kaon samples

Summary and Outlook

- AHCAL active modules have been installed for the 7th time in a W absorber structure at the SPS CERN
- Detector performance is still good.
 - The IC and gain calibration constants look very good and stable.
 - The MIP calibration is ongoing.
- Beam operation took some time to learn, but went very well once understood, even with unconventional settings for secondary beam.
- 2011 program with scintillator AHCAL almost finished and completed.
- Plan for next year is to test tungsten HCAL with gaseous readout.
 - Due to slow neutrons from W, energy resolution of a W-HCAL with gas readout might not be the same as with scintillators. This needs to be tested.

backup

Calibrations: SiPM gain

• LED system operated with low intensity light

- gain = #ADC per pixel
- good gain: [150,500]
- Module 20: bad CMB