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Introduction

Introduction

Solid-state photon detectors such as those in use by CALICE and T2K are
considered attractive candidates for light detection in a future linear
collider detector when compared with the traditional PMT.

Some advantages

B-field tolerance

Cheap

Apparent photon resolving capability

Low voltage/size/integrability

Some disadvantages

Dark noise rate per mm2 (can be 500 kHz cf 0.5 Hz).

Correlated noise: cross-talk and after-pulsing

Dynamic range
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Introduction

Photo-detector response modelling

Question

Does LED calibration data (points) follow Poisson model (red)?
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ch1_led: MPPC Channel 1

Individual photons often lead to not just 1 fired pixel, but 2, 3, 4 etc. due
to cross-talk and after-pulsing. Technology and device dependent.
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Motivation

Noise and Time Structure: Important or Not ?

ILC/CLIC

At ILC with a large inter-bunch spacing (337 ns), a relevant issue is noise
within a time interval consistent with the BX under consideration. For
CLIC, much tighter specs.
Various types of potential detectors: AHCAL, Scint. ECAL,
Muon-detector, scint. fiber tracking have different requirements.

Why this study?

These studies use the 100-pixel Hamamatsu MPPC aimed at high
efficiency low light-level detection. I work on the D0 fiber tracker and its
light calibration and have explored instrumenting parts of a LC detector
with similar instrumentation for time-stamping/TOF. At D0 using VLPCs
we have an average threshold per fiber of 1.0 photo-electrons
corresponding to 1% dark probability and Poisson distributed LED
distributions....
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Motivation

Literature and this work

Literature

There is a substantial literature from many groups about characterization
measurements related to pixelized solid-state photo-multiplier response
(see references).

Short-comings

In practice many adopted methods are either approximate, or require
dedicated measurements unlikely to be available en masse in situ for LC
detector channel counts, or potentially lose substantial predictive power /
precision by using more parameters than warranted by the underlying
effects.

This work

Hopefully helps to put some of the issues better in focus and provides a
coherent yet relatively simple integrated experimental method to test the
response modelling and the measurement of associated parameters.
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Method

Experimental Goal and Design

Goal

Measure the photo-detector response under essentially identical conditions
using identical time intervals for both non-illuminated (dark) data and
illuminated (LED) data. Currently using MPPC-S10362-11-100C sensor
with 100 pixels.

Design

Use 100-1000 Hz clock to fire LED on every other cycle.
Measure total charge integrated within a 240-300 ns time window using
dual-range QDC (FSR 800 pC).
Use single-hit TDC in common start mode to check timing characteristics.
Bias will be varied from run-to-run, but use 70.65 V corresponding to ≈
0.72V over-voltage as default setting.
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Method

Experimental Setup

LED Box 
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Method

LED Circuit

Use Kapustinsky [1] type driver circuit to obtain fast time response.
Currently using off-the-shelf green LED (λ = 565nm).

LED 

Agilent E3630A 
variable supply 
voltage 

HP 8131A pulse 
generator for 
trigger pulse 
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Method

Typical LED Event 1: prompt 1 pixel event (τ ≈ 40 ns)

Graham W. Wilson (University of Kansas) LCWS11 Granada: Calorimetry/Muons September 29, 2011 9 / 36



Method

LED Charge Distribution (gate width = 300 ns)

Measure charge response to LED (black) and dark counts (red). Photon
intensity = 0.22 detected photons/pulse.
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Method

LED Charge Distribution - Log

Measure charge response to LED (black) and dark counts (red). Photon
intensity = 0.22 detected photons/pulse.
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Method

LED Time Distribution

Measure time response to LED (black) and dark counts (red). Photon
intensity = 0.22 detected photons/pulse.
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Find FWHM for this green LED of 5ns. (1 TDC count = 0.3 ns)
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Method

Typical LED Event 2: prompt 2 pixel event
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Method

Typical LED Event 3: prompt 3 pixel event + delayed pulse
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Method

Typical LED Event 4: multiple pixels + likely afterpulses
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Method

Charge Distribution Studies

Standard conditions mostly:

Room temperature (Kansas summer day ....)

Integration time: 270 ns

LED supply voltage: 18.25 V. Leading to 4.5 detected photons at 1 V
over-voltage and nominal intrinsic gain of 2.4e6.

Amplifier gain: 38 dB
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Method

Fitting Method

Assume that the measured LED distribution, T(Q), arises from the
convolution of N(qdark) and L(qlight), where Q = qdark + qlight .

ch1_ped
Entries  100000
Mean    109.9
RMS      23.3

 Integrated Charge (ADC counts)
0 200 400 600

 C
ou

nt
s 

pe
r 

bi
n

0

5000

10000

15000

ch1_ped
Entries  100000
Mean    109.9
RMS      23.3

ch1_ped: MPPC Channel 1 ch1_led
Entries  100000
Mean    257.1
RMS     102.9

Use measured non-illuminated data (red) for N(qdark) and adjust the
parameters of the L(qlight) model to give the best fit to the LED data
(black) for the additional charge arising from LED photons.
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Method

Light Model: Essentially 2 parameters.

Pixel distribution

Use the simple probability distribution model discussed in Vinogradov et
al [2] based on a Poisson distributed random variable for the number of
photons, µγ , which result in a detected primary avalanche. Each primary
avalanche may then create a secondary avalanche with a duplication
probability, pD , and likewise a secondary avalanche may create a tertiary
avalanche with the same probability etc, etc ... pD includes both cross-talk
and after-pulsing assuming for simplicity equal charge response to both
sources.

Charge Measurement Model Parameters

1 pixel gain, g (ADC counts per pixel)

1 pixel intrinsic fractional gain resolution, σ1 = σg/g

N-pixel non-linearity, β, where qlight = Ng(1 + Nβ)/(1 + β)

N-pixel variance non-linearity, γ, where σ2N = N(1 + Nγ)σ2g )/(1 + γ)
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Method

Light Model Continued

Example

p(nA = 0) = exp{−µγ}
p(nA = 1) = exp{−µγ}µγ(1− pD)

p(nA = 2) = exp{−µγ}{µγpD(1− pD) + 1
2µγ

2(1− pD)2}
p(nA = 3) =
exp{−µγ}{µγp2D(1− pD) + µγ

2pD(1− pD)2 + 1
6µγ

3(1− pD)3}
etc ..

Needless to say - currently neglect finite pixel number

Characteristics

Mean pixel count: µγ/(1− pD)

Variance of pixel count: (µγ/(1− pD))(1 + pD)/(1− pD)
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Results

Example Fit (Run6 70.35V 38dB L)
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Results

Example Fit (Run6 70.35V 38dB L)
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Results

Example Fit (Run6 70.35V 38dB L)
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µγ 2.150(7)
pD(%) 5.00(25)
g 66.35(6)
σ1 0.113(1)
β -0.0022(4)
γ 0.007(10)
χ2/dof 936 / 794
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Results

Example Fit (Run1 70.65V 38dB L)
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Fit: µγ = 3.36± 0.01, pD = 14.0± 0.2%, χ2/dof=1921/1594.
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Results

Example Fit (Run10 70.65V 30dB L)
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Fit: µγ = 3.36± 0.01, pD = 13.0± 0.3%, χ2/dof=774/794.
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Results

Example Fit (Run8 70.20V 38dB L)
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Fit: µγ = 1.268± 0.006, pD = 0, χ2/dof=510/394.
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Results

Example Fit (Run11 70.65V 38dB 0.3L)
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Fit: µγ = 0.961± 0.004, pD = 15.0± 0.3%, χ2/dof=1424/1194.
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Results

Example Fit (Run12 70.65V 38dB 1.6L)
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Fit: µγ = 5.22± 0.02, pD = 13.4± 0.2%, χ2/dof=2327/1994.
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Results

Bias Scan

Bias Voltage (V)
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Results

Measured Photon Number

Measure the Poisson parameter of the detected primary LED photons, µγ .
(gives relative photon detection efficiency vs ∆V ).
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Results

Duplicate Probability
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Results

Photon Resolving Quality
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Results

Dark Count Probability

Can measure charge exceeding arbitrary threshold in charge integration
window (has not been the focus of this work so far) using measured
non-illuminated ADC spectrum.
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Results

Future Refinements

Adjust LED intensity at each bias voltage to keep number of detected
photons approximately constant. Should be a better method for
measuring the photon-induced noise dependence on over-voltage.

Incorporate after-pulsing time structure together with pulse shape
time constant and resolve cross-talk and after-pulsing importance.

Improve/better characterize charge measurement systematics -
amplifier/ADC linearity.

Improvements in the fitting, statistical method and convolution.
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Conclusions

Conclusions

Summary

Find that measured pixel number distributions can be well modelled
using a simple light-detection model including duplicate avalanches.
Important for understanding particle detection efficiency close to
threshold.

Experimental technique allows simultaneous determination of gain,
duplicate probability, relative PDE, dark rate and pixel resolving
capability for this particular sensor.

Conclusions

New PPDs have significant noise which is sometimes correlated and
needs to be taken into account when evaluating detector/sensor
options, predicting performance and measuring performance.

Correlated noise makes the standard procedure of setting a threshold
at 1.5 “photo-electrons” not as useful as might be expected.
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