

CLIC MDI stabilisation studies

Andrea JEREMIE

A.Badel, B.Caron, R.LeBreton, J.Lottin, G.Balik, J.P.Baud, L.Brunetti, G.Deleglise, (L.Pacquet) And other discussions and work from others involved

Outline

- What we are aiming at
- Solutions considered for FF
- Current studies on active stabilisation
- LAViSta IP feedback design (50Hz) and integrated simulations
- Outlook

What we are aiming at

Ground motion can have an impact on luminosity

Critical region of stabilisation around 1-30Hz

Typical quadrupole jitter tolerance O(1nm) in main linac quadrupole and

O(0.1nm) in final doublet

 FF aiming at 0.15nm integrated rms above a few Hz (4Hz to compare to previous studies) for the mechanical stabilisation of quadrupole magnets (guiding the beam)

 Band-width of stabilisation study 0,1-100Hz although higher frequencies can have an impact (acoustic noise...)

Solutions considered for FF

Туре	Caracteristic	Drawback
Soft passive solution	Rubber, pneumatic actuators Maximize isolation from ground motion	resonance peak in region of interest, Low stiffness
Active solution	measure perturbation and act consequently on system (real time solution)	need to act efficiently on a large band-width
Rigid passive solution	maximize coherence for optimal alignment	no possibility of action if needed
Combine passive solution and active solution for CLIC FF	isolate from ground motion at high frequencies and act at low frequency	Sensitive to perturbations?

MB quad stab: active rigid

Passive and active solution

Add coherence between QD0 and QF1 and reduce band-width on which active stabilisation has to act

V-support for the magnet

Piezoelectric actuator below its micrometric screw

Additional passive stage directly under active system is also envisaged

Very tough working conditions

Tentative assembly of values from publications and CDR

- QD0 weight: 1500kg (coils excluded)
- QD0 length: 2.7m
- Electromagnetic average dose: 2.7.10³ Gy/year (larger near outgoing pipe)
- Upper limit neutron dose: 50 Gy/yr.
- Average field (with anti-solenoid): negligible

For the moment, working on proof of principle, although keeping these "accelerator" criteria in mind

Stabilisation system

Instrumentation and dSPACE real time system adequate for nm control

400kSa/s

2mV=0.1nm

Real time set-up

Phase 1: Stabilisation system behaviour

Signal on all 4 capacitive sensors without weight on system

Even after mounting and dismounting capacitive sensors and adjusting: the signals are always within 5% => very robust to installation changes

Further mechanical adjustment and correct signal filtering, the differences between sensors goes down to 1.2%

Phase 1: Stabilisation system behaviour

No parasitic peak in frequency region of interest for QD0 stabilisation

Phase 1: Stabilisation system behaviour

Signal on all 4 capacitive sensors without weight on system

Intrinsic resonances if change of phase by 90°: other peaks just from boundary conditions => 2 resonance peaks just below

> First intrinsic resonance frequency near 2kHz: experimental and theoretical values agree.

Other modes due to boundary conditions

Capacitive sensor support needs study

Other modes due to boundary conditions

"sliding" mode

- changing to new elastomer (better guidance)
- changing some system parameters

Phase 1 concluded

- Sensor installation robust to multiple mounting and dismounting
- Very good mechanical behaviour with no resonance peak in region of interest
- Signal filtering under control

Correction scheme

Dynamical model of system

- Find a model describing the system
 - Find a numerical filter that does not change the phase (but in our case, the peaks are not noise related)
 - A sum of three 2nd order modes describes the peaks
 - Adding a pure delay from acquisition system and sensor describes the phase

Phase 2: system identification

A model describing the system has been identified: phase 2 almost finished, need to confirm the model for different I/O

Next steps for stabilisation system

- Implement controller on stabilisation system (go from simulations to measurements)
- Start again with a QD0 « dummy » mass

Complementary study

Mechanical stabilisation under study but

- Need to get a feeling on the impact of the combined different jitter mitigation systems
- Study of a complementary IP feedback working at CLIC rate of 50Hz aiming at an integrated rms of 0,15nm at 0,1Hz.

LAViSta IP feedback design and integrated simulations

This is what is implemented

Integrated simulation for IPFB

Frequency [Hz]

- -only BDS and pre-isolator
- -adding Main linac + MLQS, no FB -adding LAViSta-IPFB (BOFB) + OFB

-see effect of pre-isolator: reduce rms at high frequencies but peak around 1Hz

- -increases rms at high frequency=> ML beam jitter other than GM
- -LAViSta-IPFB reduces rms by factor 45 at 0,1Hz to a sub-nm level

=> need a good beam at FF entrance for good performance

Conclusion

- Not one single system will get CLIC to the desired beam stability and luminosity
- Need to combine Main Linac Stabilisation, BDS optimisation, Beam-based feedback, IP feedbacks etc...
 And each one has to do it's best in it's band-width and make sure one does not destroy the work of others
 - => integrated studies essential!
- QD0 stabilisation system mechanically and instrumentally good: need to add feedback (2011) and QD0 mass (2012)
- LAViSta IP feedback reduces rms at 0,1Hz by a factor 45 to
 0.2nm => integrate future "measured" FF stabilisation

