

LCWS11 Pre-isolation R&D

F. Duarte Ramos, A. Gaddi, H. Gerwig, N. Siegrist

Introduction

Stability requirements at QD0 (r.m.s. above 4Hz):

Vertical Horizontal

0.15 nm 5 nm

Passive isolation

- The simplest approach: consists of resilient member (stiffness) and an energy dissipator (damping);
- Works as a low-pass filter for ground motion;
- Widely used approach for the first "layer" of vibration isolation in nanotechnology labs;

1-DOF analysis

Two options:

Isolation from ground motion

Isolation from direct disturbances

- Hard mount would not contribute for the isolation from ground motion but would be resistant to direct disturbances in the whole frequency range;
- Pre-isolator will isolate (above 1.4Hz) the system from ground motion and will be more immune to disturbances than an hard mount above 10 Hz; the very low frequency behaviour may need to be addressed depending on the requirements;

Examples of passive pre-isolators

IBM/ETH Nanotechnology Center

Zurich, Switzerland

Description:

- Massive concrete pedestal (> 65 tons), suppressing frequencies above 25 Hz;
 - Tool platform with passive mechanical damping, suppressing frequencies above 3 Hz;

Centre for Metrology and Accreditation Helsinki, Finland

• 4 concrete pedestals (3x70 ton + 1x140 ton) supported by 0.8 Hz pneumatic vibration isolators;

Pre-isolator integration

Pre-isolator integration

Pre-isolator integration

First FEA simulations

Vertical movement of QD0 vs. ground excitation

- The main resonance frequency at 1 Hz allows isolation from ground motion above 1.4 Hz;
- The resonance peak at 50 Hz (support tube) is tunned to match the bunch train frequency;
- The design of the pre-isolator results in a good decoupling between the different directions.

Effect of non-coherent ground motion

(Extreme scenario)

Good performance despite the "lever-arm" effect

Passive isolation test set-up

Validate the results from the finite element model

Assess the influence of external perturbations in a noisy environment (workshop floor)

Check for energy loss mechanisms (friction, plastic deformation,...)

Evaluate the performance of a passive system

with some of the pre-isolator's characteristics: heavy mass (40 ton) and low natural frequency (1.3 Hz)

Simulated performance

- Design resonance frequency of 1.3 Hz (only slightly above the pre-isolator's one);
- Due to design constraints, higher order eigenfrequencies exist below 100 Hz;
- Decoupling between the different directions does not exist.

Simulation vs. measurements

Vertical PSD

Integrated vertical r.m.s.

- Despite the higher order eigenfrequencies, a reduction of 40% in the vertical vibration level was still obtained;
- More important, the broad bandwidth of isolation reveals that the system can withstand the action of typical external disturbances (air flow, acoustic pressure, etc.) even in a noisy environment.

Summary (1)

- A pre-isolator is a simple and widely used approach to provide a "stable" ground for the active/beam-based stabilization to work;
- Its low-pass filter nature fits the requirements of stabilizing QD0 above a few (four) Hertz;
- First finite element models have shown the good performance of the proposed design;
- A test set-up confirmed the good match between the measured and simulated data in the low to mid-range frequencies;
- The test set-up also allowed to verify that a massive passive isolation system can perform in a noisy environment;

Summary (2)

- Despite the coupling between the different directions and the high frequency internal modes, the test set-up proved to be robust (the proposed ~110ton system will not suffer from these issues);
- If needed, the low frequency behavior (eigenfrequencies) of the pre-isolator can be addressed (ongoing contacts with industry);
- Integration with other systems has started: J. Snuverink et al., "Status of Ground Motion Mitigation Techniques for CLIC", IPAC11

Thank you