Decoupling property of SUSY extended Higgs sectors and implication for electroweak baryogenesis

Shinya KANEMURA University of TOYAMA

 S. K., T. Shindou, and K. Yagyu
 PLB699, 258 (2011)

 M. Aoki, S.K., T. Shindou, K. Yagyu, arXiv: 1108.1356

 S.K, E. Senaha, T. Shindou,

LCWS11, Granada, Sep.28, 2011

Higgs sector and New Physics

- SM has been successful
 - But, yet to be established
 - Higgs sector is unknown

Possibility of a non-minimal Higgs sector

- Requirement for physics BSM
 - Hierarchy problem
 - Dark Matter
 - Neutrino mass
 - Baryon Asymmetry of Universe

We expect new physics BSM at the TeV scale

Higgs sector is the key to new physics

Decoupling/Non-decoupling

Decoupling Theorem
 Appelquist-Carazzone 1975

 New phys. loop effect in observables
 1/Mⁿ → 0 (decouple for M→∞)

- Violation of the decoupling theorem
 - Chiral fermion loop (ex. Top, 4th gen.)

 $m_f = y_f v$

- Boson loop (ex. H^+ in non-SUSY 2HDM)

 $m_{\phi}^2 = \lambda_i v^2 + M^2$ (when $\lambda v^2 > M^2$)

Non-decoupling effect

Higgs potential

To understand the essence of EWSB, we must know the self-coupling in addition to the mass independently

$$V_{\text{Higgs}} = \frac{1}{2} \underline{m_h^2} h^2 + \frac{1}{3!} \underline{\lambda_{hhh}} h^3 + \frac{1}{4!} \lambda_{hhhh} h^4 + \cdots$$

Effective potential $V_{\text{eff}}(\varphi) = -\frac{\mu_0^2}{2} \varphi^2 + \frac{\lambda_0}{4} \varphi^4 + \sum_f \frac{(-1)^{2s_f} N_{C_f} N_{S_f}}{64\pi^2} m_f(\varphi)^4 \left[\ln \frac{m_f(\varphi)^2}{Q^2} - \frac{3}{2!} \right]$
Renormalization $\frac{\partial V_{\text{eff}}}{\partial \varphi} \Big|_{\varphi=v} = 0, \quad \frac{\partial^2 V_{\text{eff}}}{\partial \varphi^2} \Big|_{\varphi=v} = m_h^2, \quad \frac{\partial^3 V_{\text{eff}}}{\partial \varphi^3} \Big|_{\varphi=v} = \lambda_{hhh}$

SM Case
$$\lambda_{hhh}^{\text{SMloop}} \sim \frac{3m_h^2}{v} \left(1 - \frac{N_c m_t^4}{3\pi^2 v^2 m_h^2} + \cdots\right)$$

Non-decoupling effect

Case of Non-SUSY 2HDM

- Consider when the lightest h is SM-like $[\sin(\beta - \alpha) = 1]$
- At tree, the *hhh* coupling takes the • same form as in the SM

• At 1-loop, non-decoupling effect m_{0}^{4}

SK, Kiyoura, Okada, Senaha, Yuan, PLB558 (2003)

 $\Phi = H, A, H^{\pm}$

Relation to electroweak baryogenesis

Sakharov's conditions:

Broken Phase

 $\phi = v_c$

Quick sphaleron decoupling to retain sufficient baryon number in Broken Phase

$$\frac{\varphi_c}{T_c}\gtrsim 1$$

Symmetric Phase

 $\phi = 0$

EW baryogenesis and the hhh coupling

Finite temperature potenital

Strong 1st OPT ⇔ Large *hhh* coupling

In this talk

- We consider an extended SUSY Higgs model which can realize the strong 1st OPT due to the non-decoupling effect
- SUSY
 - Cancellation of quadratic divergences
 - DM candidate (R-parity)
 - Many CP phases
 - GUT, Radiative EW breaking
 - Even if it becomes a strong coupled theory at 10 TeV, still nice
- EW baryogenesis in SUSY models MSSM, MSSM+U(1), NMSSM,
- We here consider a new model for EW baryogenesis

What kind of SUSY Higgs sectors give strong 1st OPT ? (large deviation in the *hhh* coupling?)

$$\begin{array}{|c|c|c|c|c|c|c|c|} \text{Case of} \\ \text{Non-SUSY} \\ \text{THDM} \end{array} \lambda_{hhh}^{2\text{HDM}} \simeq \frac{3m_h^2}{v} \left[1 + \frac{m_{\Phi}^4}{12\pi^2 m_h^2} \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^3 - \frac{m_t^4}{\pi^2 v^2 m_h^2} \right] \end{array}$$

1. MSSM: only D term [+ (F-term top Yukawa at loop)] determines m_h , *hhh* etc. (A light stop scenario)

2. General SUSY Higgs sector

 $V_{int} = |D|^2 + |F|^2 + Soft-breaking$ F-term contributions: appear with additional singlets, triplets $W = \lambda \quad H_u \cdot H_d \varphi$ Large non-decoupling effects can appear in observables via F-term

NMSSM (MSSM+S)

Chiral Superfield: **S (singlet)** which generates F-term interaction

$$W = \lambda_{HHS} H_u H_d S$$

Same coupling makes both m_h and the *hhh* coupling large

Fat Higgs model

Harnik, Kribs, Larson, Murayama

Composite H_1, H_2, N A UV complete theory At low energy, a strong NMSSM $W = \chi(MU, U, \omega^2)$

 $W = \lambda (NH_1H_2 - v_0^2)$

The SM-like Higgs can be heavy

$$\begin{split} m_h^2 &\simeq \lambda^2 v^2 + \mathcal{O}(m_Z^2) \\ M_{H^\pm}^2 &= M_A^2 - \lambda^2 v^2 \\ \hline \lambda \, \text{can be of O(1)} \end{split}$$

m_h > 200 GeV

after renormalization

Non-decoupling effects

SM-like Higgs mass

$$\begin{split} m_h^2 &\simeq m_Z^2 \cos^2 2\beta + (\text{MSSM-loop}) \\ &+ \frac{\lambda_1^4 v^2 c_\beta^4}{16\pi^2} \ln \frac{m_{\Omega_2^\pm}^2 m_{\Phi_2^{\prime\pm}}^2}{m_{\tilde{\chi}_2^\pm}^4} + \frac{\lambda_2^4 v^2 s_\beta^4}{16\pi^2} \ln \frac{m_{\Omega_1^\pm}^2 m_{\Phi_1^{\prime\pm}}^2}{m_{\tilde{\chi}_1^\pm}^4} \\ &\text{m}_h \text{ cannot be very large: 114-135 GeV} \end{split}$$

$$\begin{aligned} \text{The hhh coupling} \\ \lambda_{hhh}^{\text{Model}} &\simeq \lambda_{hhh}^{\text{SM}} \left[1 + \sum_{1,2} \frac{m_{\Omega_i}^4}{6\pi^2 v^2 m_h^2} \left(1 - \frac{\overline{m}_i^2}{m_{\Omega_i}^2} \right)^3 + \cdots \right] \\ &m_{\Omega_1}^2 &\simeq \overline{m}_1^2 + \frac{\lambda_1^2 \sin^2 \beta}{2} v^2 \\ &m_{\Omega_2}^2 &\simeq \overline{m}_2^2 + \frac{\lambda_2^2 \cos^2 \beta}{2} v^2 \end{aligned}$$

$$\begin{aligned} \text{Deviation can be large when} \\ \hline m_{\Omega_i} &\gg \overline{m}_i \end{aligned}$$

20-70%!

Electroweak Phase Transition

180

 λ_2

Finite T potential

RGE analysis in 4HDM+ Ω

S.K., T. Shindou, K. Yagyu, 2010

EW Phase Transition in 4HDM+ Ω

S.K., E. Senaha, T. Shindou arXiv:1109.5226

Large *hhh* coupling ⇔ Strong 1st OPT

Testable at ILC !

Higgs self-coupling at ILC

The nature of EWSB $V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$

- LHC: Difficult for a light Higgs (< 140 GeV)
- ILC: Testable
 - Simulation study underway
 Suehara-san's talk

LC Physics!

It is important to determine the hhh coupling by O(10) %

D. Harada 2010

Summary

• We have discussed an extended SUSY Higgs sector which can naturally realize the strong 1st order phase transition

$$W = \lambda_1 H_u H_u' \Omega_1 + \lambda_2 H_d H_d' \Omega_2$$

• Relatively large λ_1 , λ_2 couplings give significant nondecoupling contributions to the Higgs potential (1st OPT and the large deviation in the *hhh* coupling)

- Strong coupled theory with a light SM-like Higgs boson

- The model can be a new candidate for successful EW baryogenesis
- The scenario can be tested by measuring the *hhh* coupling at the ILC (and light charginos)

Back up slides

Tree :
$$\tan \beta = 3$$
, $m_{H^{\pm}} = 500 \text{ GeV}$;
1-loop (MSSM) : $\tilde{M}_{\tilde{q}} = \tilde{M}_{\tilde{b}} = \tilde{M}_{\tilde{t}} = 1000 \text{ GeV}$,
 $\mu = M_2 = 2M_1 = 200 \text{ GeV}$,
 $A_t = A_b = X_t + \mu / \tan \beta$;
1-loop $(\Phi_{1,2}^{\prime\pm}, \Omega)$: $\lambda_1 = 2, \mu' = \mu_{\Omega} = B_{\Omega} = B' = 0$,
 $\overline{m}_+^2 = \overline{m}_3^2 = (500 \text{ GeV})^2$,
 $\overline{m}_-^2 = \overline{m}_4^2 = (50 \text{ GeV})^2$.

Next-to-MSSM (NMSSM)

Two Higgs doublets H_u , H_d and a singlet S

$$W = \lambda_{HHS} H_u . H_d S - \kappa S^3$$

Mass of the lightest *h* in the NMSSM

$$\begin{split} m_h^2 \simeq m_Z^2 \cos^2 2\beta + (\lambda_{HHS}^2 v^2/2) \sin^2 2\beta + \delta m_{\text{loop}}^2 \\ & \uparrow \\ \text{D-term} \\ \text{F-term} \\ \text{What is the size of } \lambda_{\text{HHS}}? \\ \text{RGE analysis with a cut-off scale } \Lambda \\ \end{split}$$

 $(m_h^{\sim} 450 \, {\rm GeV})$

Cut-off Λ : TeV scale $\rightarrow \lambda_{HHS} \sim 2.5$

Upper limit on m_h as a function of tan β

The triple Higgs boson coupling

F-terms only contribute to hhh

⇒ Large hhh deviation

