Fermiophobic Higgs boson decays: probing the radiative fermionic sector at a linear collider

Emidio Gabrielli NICPB, Tallinn University

in collaboration with B. Mele (INFN, Rome 1)

talk based on PRD 83: 073009 (2011)

PRD 82: 113014 (2010)

LCWS11, International Workshop on Future Linear Colliders

Granada, 26-30 September 2011

Outline

a non-standard scenario: Fermio-Phobic (FP)
Higgs

- radiative corrections → fermionic couplings regenerated
- expectations at the LHC and LC
- present experimental bounds

Origins of Yukawa couplings

- hierarchy of fermion masses is still a puzzle!
- in SM, problem just shifted to the Yukawa sector $\mathcal{L} = \mathbf{Y_f} \bar{\psi}_\mathbf{f} \psi_\mathbf{f} \, \mathbf{H} \implies \mathbf{m_f} = \mathbf{Y_f} \langle \mathbf{H} \rangle$
- difficult to explain all fermion spectrum and CKM mixing by means of few parameters

- maybe the mechanism of fermion and W/Z masses is different
- but EW precision tests favor a light Higgs!

...what if Higgs boson is only responsible for Mw, Mz but not of fermion masses?

- fermion masses mf ChSB
 (Chiral Symmetry Breaking)
- in SM, ChSB and EWSB (Mw,Mz) generated by the Higgs mechanism at same scale ~ <H>
- not (yet) any experimental evidence supporting tree-level Yukawa couplings Yf
- ChSB and EWSB can have different mechanisms
- → compositeness, extra-dimensions, technicolor...

a non-standard scenario: a Fermio-Phobic (FP) Higgs

- NO Yukawa couplings at tree-level
- Higgs mechanism gives rise to EWSB and Mw, Mz but is not responsible for ChSB and fermion masses

Higgs decays: FP vs SM

[through W loops (no-top loops)]

 Θ H \rightarrow WW, ZZ, $\gamma\gamma$, $Z\gamma$

SM Higgs

FP Higgs

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/Fermiophobic

for m_H ~[100,110,120] GeV: $BR(\gamma\gamma)_{FP}$ ~[110, 30, 10] $xBR(\gamma\gamma)_{SM}$

Fermio-Phobic Higgs Production mechanisms

- no gluon-gluon fusion
- VBF fusion dominant mechanism
- harder pT spectrum → better 5/B!

How to include radiative corrections?

- if mf's are put by hand → SM becomes not renormalizable
- \blacksquare SM \rightarrow effective field theory valid up to Λ scale
- radiative corrections depend by the UV completion of the theory, but less sensitive if $Yf(\Lambda) \rightarrow 0$
- EFT approach allows to calculate the leading universal contributions $\sim [g^2 Log(\Lambda/MH)]^n$ which are independent of the UV completion

Theoretical framework

- assume ChSB and EWSB have different origin
- switch off Yf's → Fermio-Phobic Higgs
- mf's generated by some new mechanism set at a high-energy scale Λ (>> EW scale)
- Higgs gives dominant contributions to Mw e Mz (contributions to EWSB arising from ChSB, small)
- \blacksquare only SM degrees of freedom propagating at scales below Λ
- a light Higgs in the spectrum (mH < 150 GeV)

EFT approach connects two scales Λ and mH

assume Yf's vanishing at the scale $\Lambda\gg m_H$ (related to mf's generation)

$$Y_f(\Lambda) = 0$$

- due to ChSB, Yf's are not protected under radiative corrections \rightarrow radiatively generated \rightarrow large Log(Λ /mH)
- lacksquare large logs $g_i^{2n} \log^n \left(\Lambda/m_H
 ight)$ can be summed up by

Renormalization Group Equation (RGE) technique

$$Y_f(\Lambda) = 0$$
 \longrightarrow $Y_f(m_H)$ (high energy) RGE (low energy)

note ! SM RGE (where Yf's and mf are related) not suitable here → new RGE's deerived by keeping Yf's and mf's as independent parameters!

Diagrams contributing to the Y's beta-functions

1-loop RGE's for Yukawa's

$$\frac{d\mathbf{Y_{U}}}{dt} = \frac{1}{16\pi^{2}} \left\{ 3\xi_{H}^{2} \left(\mathbf{Y_{U}} - \mathbf{Y_{U}^{SM}} \right) - 3\mathbf{Y_{U}^{SM}} \mathbf{Y_{D}^{SM}} \left(\mathbf{Y_{D}} - \mathbf{Y_{D}^{SM}} \right) + \frac{3}{2} \mathbf{Y_{U}} \left(\mathbf{Y_{U}} \mathbf{Y_{U}} - \mathbf{Y_{D}^{SM}} \mathbf{Y_{D}^{SM}} \right) - \mathbf{Y_{U}} \left(\frac{17}{20}g_{1}^{2} + \frac{9}{4}g_{2}^{2} + 8g_{3}^{2} - \mathbf{Tr}(\mathbf{Y}) \right) \right\},$$

$$\frac{d\mathbf{Y_{D}}}{dt} = \frac{1}{16\pi^{2}} \left\{ 3\xi_{L}^{2} \left(\mathbf{Y_{D}} - \mathbf{Y_{D}^{SM}} \right) - 3\mathbf{Y_{D}^{SM}} \mathbf{Y_{D}^{SM}} \left(\mathbf{Y_{U}} - \mathbf{Y_{D}^{SM}} \right) + \frac{3}{2} \mathbf{Y_{D}} \left(\mathbf{Y_{D}} \mathbf{Y_{D}} - \mathbf{Y_{D}^{SM}} \mathbf{Y_{D}^{SM}} \right) \right\}$$

$$\frac{d\mathbf{Y}_{\mathbf{D}}}{dt} = \frac{1}{16\pi^2} \left\{ 3\xi_H^2 \left(\mathbf{Y}_{\mathbf{D}} - \mathbf{Y}_{\mathbf{D}}^{\mathbf{SM}} \right) - 3\mathbf{Y}_{\mathbf{D}}^{\mathbf{SM}} \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \left(\mathbf{Y}_{\mathbf{U}} - \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \right) + \frac{3}{2} \mathbf{Y}_{\mathbf{D}} \left(\mathbf{Y}_{\mathbf{D}} \mathbf{Y}_{\mathbf{D}} - \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \mathbf{Y}_{\mathbf{U}}^{\mathbf{SM}} \right) - \mathbf{Y}_{\mathbf{D}} \left(\frac{1}{4}g_1^2 + \frac{9}{4}g_2^2 + 8g_3^2 - \mathbf{Tr}(\mathbf{Y}) \right) \right\},$$

$$\frac{d\mathbf{Y_E}}{dt} = \frac{1}{16\pi^2} \left\{ 3\,\xi_H^2 \left(\mathbf{Y_E} - \mathbf{Y_E^{SM}} \right) + \frac{3}{2}\mathbf{Y_E}\mathbf{Y_E}\mathbf{Y_E} - \mathbf{Y_E} \left(\frac{9}{4} \left(g_1^2 + g_2^2 \right) - \mathbf{Tr}(\mathbf{Y}) \right) \right\}$$

$$\xi_H \equiv rac{g_2 m_H}{2 M_W}$$
 $W_{
m L}$ polarization

 $\mathbf{Y_f^{SM}} \equiv \frac{g_2}{\sqrt{2}M_W} \mathrm{diag}[m_{\mathrm{f}_1}, m_{\mathrm{f}_2}, m_{\mathrm{f}_3}]$ ChSB terms

 $\mathbf{Y} \equiv N_c \mathbf{Y}_{\mathbf{U}} \mathbf{Y}_{\mathbf{U}} + N_c \mathbf{Y}_{\mathbf{D}} \mathbf{Y}_{\mathbf{D}} + \mathbf{Y}_{\mathbf{E}} \mathbf{Y}_{\mathbf{E}}$

SM RGE's recovered for \longrightarrow $\mathbf{Y}_{\mathbf{f}}^{\mathrm{SM}} \to \mathbf{Y}_{\mathbf{f}}$

Results for Y_t(mH)/Y_tSM and Y_b(mH)/Y_bSM

- A varied between 104 and 10¹6 GeV
- ullet because of terms $\xi_H \equiv rac{g_2 m_H}{2 M_W^{\prime}}$ Yf grows at large mH
- all Yf's perturbative for mH < <H> ~246 GeV

Results for $\Gamma_{\rm H}$ and BR's versus Λ

BR's enhanced by small total width

BR / BR(SM): $\Lambda \sim (104 \rightarrow 10^{16})$ GeV

LHC (VBF) : $H \rightarrow \gamma \gamma$

LHC (WH) : $H \rightarrow \gamma \gamma$

exp bounds on mH (pure FP model)

Quite a number of studies on pure FP scenario

```
* LEP \rightarrow 109.7 GeV (comb. \gamma\gamma data on 4 exps) ('02) (108.3 GeV, comb. \gamma\gamma+WW* in L3) 
* CDF \rightarrow (100-) 114 GeV 7 fb-1 (May 2011) 
* D0 \rightarrow (100-) 112.9 GeV 8.2 fb-1 (July 2011) 
* CMS \rightarrow (110-) 112 GeV 1.7 fb-1 (LP2011)
```

- bounds in "Effective Yf" scenarios needs dedicated studies
 - ullet in general weaker than in FP, and depending on Λ

bounds on mH (effective Yf's model)

bounds obtained with Higgsbounds-3.4.0beta (not updated with recent bounds on FP Higgs from LHC and CDF) Comput.Phys.Comm.181:138 (2010)

FP light Higgs at Linear Colliders

very good option $ightarrow \sqrt{S} = 350\,\mathrm{GeV}$

advantages

- it allows an accurate study of a light Higgs boson's properties
- precise measurements of Yukawas
- lacktriangle LHC and Tevatron will constrain the scale Λ of ChSB
- \blacksquare LC could provide a measurement of Λ

Correlations of BR(H→ff)/BR(H→bb)

BR[%]

testing BR's correlations in fermion channels is crucial to prove Effective Yf's scenario!

Flavor-Changing Higgs decay H → bs

- SM BR(H \rightarrow bs) < O(10⁻⁷) radiatively induced
- in FP Higgs scenario H → bs also radiatively induced → but BR enhanced since ΓH depressed
- CKM matrix responsible of FC decay H → bs
- we computed RGE for the off-diagonal Yf's
- BR(H \rightarrow bs) of order $O(10^{-4} \rightarrow 10^{-3})$ for $\Lambda \sim 10^4 \rightarrow 10^{16}$ GeV

Correlations of FC BR(H→bs)/BR(H→bb)

EG, B. Mele, Le

Less sensitive to MH due to unitarity of CKM

Outlook

- Fermio-Phobic Higgs scenario is unstable under radiative corrections → ChSB regenerates Yukawa couplings
- EFT approach to calculate radiative corrections → unified descriptions of a wide class of possibilities
- if the scale Λ of ChSB is very large \rightarrow BR(H \rightarrow bb) can be comparable to SM one
- LHC will test soon effective Yf's scenario → but accurate study of H → bb,cc, ττ, requires LC
- rates for $e+e- \rightarrow ZH \rightarrow Zbb$ remarkably sensitive to the scale Λ !
- new analysis of LC sensitivity to Higgs BRs in the new framework needed

Backup

LHC (WH): H → bb

Tevatron $(pp \rightarrow HX)$

VB = (WH+ZH+VBF)

Accuracy on BRS for SM Higgs boson

"Phase 1": 500 fb $^{-1}$ at 350 GeV, no beau

SM Higgs branching ratio uncertainties

	$m_H=$ 120 GeV	140 GeV
$\overline{BR(b\overline{b})}$	2.4%	2.6%
$BR(car{c})$	8.3%	19.0%
BR(au au)	5.0%	8.0%
BR(WW)	5.1%	2.5%
BR(gg)	5.5%	14.0%

New analysis needed to establish $\Delta BR(H \rightarrow ff)$