

INTERNATIONAL WORKSHOP ON FUTURE LINEAR COLLIDERS IN GRANADA SPAIN III

AWG5 summary

Conveners: L. Gatignon, R. Tomas & A. Seryi

CLIC collimation exhaustive review

Deep impacts can fracture the collimator.

Solutions: New materials (~hollow collimators), non-linear collimation, etc

J. Resta et al

Progress in tuning the CLIC FFS

Combining Simplex with knobs almost meets the target. Needs work and other options.

Hadron events are a great luminosity signal!!

Hadron signal is well correlated with luminosity for all linear beam aberrations at the IP

Traditional FFS for CLIC?

H. Garcia

	Traditional 1	Traditional 2	Nominal
Length [km]	3	1.5	0.5
Luminosity [L ₀]	0.80	0.73	1
Bandwidth [%]	0.40	0.37	0.59

Current local chromaticity FFS scheme is clearly superior to the traditional design, to be improved

ATF2 – Impressive recovery from earthquake

Beam back already in June!

ATF2 schedule

ATF2 schedule

Planning for Goal1 (Autumn) P. Bambade

October (2 weeks)

- alignment day-time → beam evenings & nights

- DR tuning (emittance ~ 10 pm, reproducible extraction orbit), extraction

November week-1

 if needed, further DR tuning (emittance reduction, reproducible & stable extraction)

initial R-matrix, BBA, steering, linear optics, BSM laser wire test

November week-2

- Trial run with "goal 1" 6-shift block;

→ recover 300 nm spot in BSM interference mode

December week-1

- further R-matrix, BBA, steering, linear optics

- IP beam stability test with IP-BPM, slow feedback

- decision on whether to increase β^* by factor 5

December week-2

- focus on "goal-1" 6-shift blocks in weeks 2 and 3;

December week-3

 \rightarrow validate 30° BSM fringe mode with σ_v < 300 nm;

- initial test of 174° BSM mode if possible

Planning for Goal1 (Autumn)

P. Bambade

October (2 weeks)

alignment day-time → beam evenings & nights

- DR tuning (emittance ~ 10 pm, reproducible

extraction orbit), exaction

November week-1

- if needed, furnity DR turing (emittance reduction, reproducible & stable (A raction)

- initial Panatrix, PEM steering, linear optics, BSM

lase. While test

November week-2

Kal run goal 1" 6-shift block;

recor 300 nm spot in BSM interference mode

December week-1

Ther R-matrix, BBA, steering, linear optics

IP beam stability test with IP-BPM, slow feedback

- decision on whether to increase β^* by factor 5

- focus on "goal-1" 6-shift blocks in weeks 2 and 3;

 \rightarrow validate 30° BSM fringe mode with σ_v < 300 nm;

- initial test of 174° BSM mode if possible

December week-2

December week

Shintake monitor

J. Yan

High BG

Investigate new BG source

→ intermediate collimator

Extra post-IP BG source

gamma detector

bending magnet Bremsstrahlung

e-bean

Beam size jitter

New status display

Monitor beam profile, magnet current

Beam position jitter

Requirement for 30 mode, $\sigma_{y} \sim 100 \text{ nm}$:

IPBPM res. < 30 nm Beam position jitter < 50 nm

Needs work!!
S. Boogert

New analysis method:

"atfepics_full"
Include data of all ATF2 BPMs

Critical: Rotation of IP BSM

G. White

Can we know/control this at the 100urad level?

New lattice

G. White

	BX1BY1	BX2.5BY1	BX10BY1
MFB2FF waist σx/σy (um)	275/0.67	249/0.57	150/1.16
IP σx/σy (um/nm)	4.2/ 35.8	4.5/36.3	8.9/36.0
IP 3rd order subtracted σy (nm)	34.3	34.0	34.2
IP effective βy / mm	0.098	0.096	0.097
Dominant residual aberrations and contributions / nm	T344(0.8), U3246 (0.2)	T344 (2.1), U3244 (0.1)	T344(1.2), U3246(0.1)

Discussion: Consensus to use BX2.5BY1

New FD quads from CERN?

Tolerances for QD0FF and QF1FF at a $r_a = 0.02$ m

Н.	Garcia
E.	Marin

Multipole	Sextupol	ar $[10^{-4}]$	Octupolar $[10^{-4}]$		
Component	Normal	Skew	Normal	Skew	
QF1/QD0	0.83	0.109	2.61	0.304	

Multipole	Decapola	$ar [10^{-4}]$	Dodecapolar $[10^{-4}]$		
Component	Normal	Skew	Normal	Skew	
m QF1/QD0	3.04	0.542	8.11	1.28	

Reaching 25-30nm in ATF2 requires:

- -new FD quads,
- -swapping quads S. Bai & E. Marin
- -increase β*_X

New QF1 & QD0 design

Hybrid Large aperture

- 1- P.M. Block, Sm2Co17
- 2- Aluminium core
- 3- Return Yoke, AISI 1010
- 4- Pole Tip, AISI 1010
- 5- Tuning block, AISI 1010

Magnet Name	, Stainless Fife		Linac 4(Proto)			
Gradient	6.79	1 T/m	~16 T/m			
Aperture radius	40 mm		22.5mm			
GFR radius	20mm (50%)		15 mm (67%)			
Harmonic N	Reg	uired	MSRD@15 mm Scaled@11.25 mm(50%)		nm(50%)	
	an	bn	an	bn	an	bn
3	0.124	0.748	8.5	-5.2	6.38	-3.90
4	0.344	4.12	0.5	6.1	0.28	3.43
5	0.665	2.76	-1.3	-0.3	-0.55	-0.13
6	1.57	9.82	0.8	-2.2	0.25	-0.70

Good **Field** quality!

Possibility to detect ground motion at ATF2

Yves Renier

New algorithm incorporating Sextupole effects

FFS QD0 prototype design and procurement M. Modena

Coils are being manufactured. First tests with coils planned for November.

New 3-D simulations for the CLIC anti-solenoid

The mayor challenge is the scale difference:

Experiment outer radius = 7 m,

QD0 aperture radius = 4.125 mm.

ILC QD0, can we revive accelerator tests?

Final Decision: Point laser at quadrupole magnetic center through magnetic shield.

29 September 2011 Granada, Spain "QD0 Prototype Plans," Brett Parker, BNL-SMD

Compensating the CLIC luminosity loss due to the Crab Cavity

Case	CC	E-z corr	$\theta_c/2$	$\mathcal{L}/\mathcal{L}_{Case\ 1}[\%]$
1	No	No	0 mrad	100.0
2	Yes	No	10 mrad	95.0
3	Yes	No	-10 mrad	99.2
4	No	Yes	0 mrad	99.0
5	Yes	Yes	10 mrad	94.3
6	Yes	Yes	-10 mrad	99.8

J. Barranco

Crossing scheme matters!!

Post-collision line

E. Gschwendtner

- 5 window-frame dipoles and 4 C-shaped dipoles
- Absorbers and an intermediate dump
 To reduce beam losses in the magnets
- Possible background sources: Backscattered photons and neutrons from dump and along post-collision line

Luminosity Monitors

- 1. Beamline beamstrahlung monitors are based on:
- direct counting of beamstrahlung photons
 Or
- ♦ indirect measurement, where the photons could be converted into e+e-pairs in a thin foil.
- 2. Beam dump luminosity monitor is based on detection of high energy muons
- ♦ High energy muons escape the main dump nearly unaffected, except for small energy losses due to ionization.
- ♦ Transverse distribution of muons depends on the offset of primary beams.

Armen Apyan

LCWS11 - 25.08.11

Spatial Distribution of Muons after Beam Dump

(Vertical Offset)

Armen Apyan

LCWS11 - 25.08.11

Dump simulations and considerations c. Maglioni

Noncommercial use only

- The window cannot withstand the hydrostatic pressure
- If no circulation water boils in few pulses
- Interlock must be as fast as three pulses
 - Stiffeners on tank & window? sweeping system? Shock absorber?