IR Engineering Specifications

Toshiaki Tauchi (KEK) ILD MDI and Integration Meeting LAL, Orsay, France 22 May 2011

For DBD/TDR : Design Study for the Interaction Region; Push-Pull System for the ILC by the MDI-CTG + A.Seryi (BDS) , July 2010

Tasks (Work Plan)

The following list summarises the major tasks of the working plan.

- 1. Design of the detector motion system; study of its vibration properties in simulation and experiment.
- 2. Design of the IR underground hall for push-pull, including facilities and services for the operation of the detectors, radiation shields, seismic issues, impact of safety rules.
- 3. Optimisation of the detector integration and its impact on assembly procedures, magnetic and radiation shielding, vibration sources.
- 4. Design of detector services supplies for push-pull (data and HV cables, cryogenics).
- 5. Design and prototype of the final doublet quadrupoles and verification of their stability.
- 6. Design of alignment system for the final doublet magnets and the inner detector components, including the design of a laser interferometer system.
- 7. Study on IR vacuum design, including vacuum requirements and design of quick connection valves.
- 8. Study of intra-train feedback systems in a push-pull system.

Date	Milestone
Summer 2010	Finalisation of work plan, implementation of additional resources
October 2010	Linear Collider Workshop at CERN
March 2011	Linear Collider Workshop (ALCPG11), Eugene
Spring 2011	First draft of IR engineering specifications
Fall 2012	Finalisation of IR engineering specifications
End of 2012	Finalisation of ILC Technical Design Report and the Detailed Baseline Description

Work Plan Diagram

	Task Name		2010 2011 2012								2013				
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
	Push-Pull Design Study		0		1		1	1							
Done	T0: Finalisation of Work Plan				•										
	Work Plan Evaluation				L										
	Push-Pull Work Plan			•	ή		•								
	T1: Detector Motion System														
	Motion System Studies (incl. Vibrations)						L								
	Decision on Motion System (Platform or not)						<u> </u>								
	Detector Motion System Design														
	T2: IR Hall Design			7								-			
	Civil Facilites and Services												1		
	Radiation Shields														
	Seismic Studies														
	Interface to Extraction Beam Lines and Beam Dump					:				:					
	Impact of Safety Rules	1								:					
	T3: Detector Integration and Assembly						÷					-			
	Assembly Procedure Study									:					
	Detector Integration					:				:					
	Magnetic and Radiation Shielding					:				:					
common?	T4: Detector Services						4								
	Movable Services (Cryo, Cables)	1													
	T5: Final Doublet Design and Prototyping	1			3							•			
	Vibrational Stability Studies	1				:									
	Magnet Integration Design	1				:									
	T6: Alignment Procedures	1			S							•	1		
	Alignment System for FD and Inner Detector	1													
	Laser Interferometer System	1				:									
	T7: Vacuum Design	1			S								1		
	Vacuum Requirements	1				:			-						
	Connection Valves Design	1													
	T8: Feedback System	1		7	S							-	2		
	Design of Feedback System for Push-pull environment					:				1		_			
draft	IR Engineering Specifications	_										•	7		
	Preparation of TDR/DBD	_											\	<u>.</u>	
	TDR/DBD Editing	1													
	ILC Milestones	1												1	
	Technical Design Phase 2	1			•					1				i	
	CERN Workshop	1			•										
	Oregon Workshop	1				4									
	TDR/DBD Publication	1		3						-					

Plenary summery talk on "Planning the Push-Pull" Conclusions by Marco Oriunno at ALCPG11

- Platforms are a technically acceptable solutions for the push pull, which preserves the respective design of the detectors and does not amplify the ground vibrations.
- The platforms must be designed according to a set of Functional Requirements, specifying the static and dynamic performances. These requirements will be defined by the detectors.
- The design and construction of the platforms becomes a task of the CFS group, which will develop the project along the requirements list and together with the detectors.

Trade off study - Conclusion

by Marco Oriunno at ALCPG11

SiD with Platform

ILD with Platform

Mandatory requirements	SiD	ILD
Design Change Impact	None	None
Vibrations Amplification	Low	Low

SiD Platform Functional Requirements

SiD nominal mass: Barrel 5000 T; (each) Door 2500 T

Dimensions:

Z = 20.0 mX = 20.0 m Delta Y = 9 m (Top of Platform to beamline)

Positioning Tolerance on beamline

Consider points Z=+-max, X=0. Position to + 1mm wrt references in X,Y,Z Consider points Z=+-max, X=+-max: Position to +- 1 wrt references in Y.

Static Deformations: <+-2 mm

Vibration Transfer Function from ground : Amplification < 1.5 between 1 and 100 Hz.

Seismic stability: Appropriate for selected site. (Beamline must be designed with sufficient compliance that VXD will survive)

SiD Platform Functional Requirements

Accelerations:

<1 mm/s²

Transport velocity:

V>1 mm/s after acceleration

Life: 100 motion cycles.

Reliability: Transport modularity must be such that repairs/ replacement/maintenance can be accomplished in garage position and within 20 elapsed days.

Any equipment required for transport shall reside below the platform surface.

Transport equipment shall not eject particulates that reach platform surface (need spec on how much)

ILD platform and hall fundament

Stromhagen, Richard / DESY-Hamburg / ILD Integration Workshop, 19-20 April 2011, LAL - Paris

We have played on three parameters to try to reduce hall diameter

An example of Asian mountain site

Y. Sugimoto, IWLC10, CERN/CICG, 8 Oct.2010

Shape of cavern

- Study of 2 sample sites
 - Both sites have very good geology of granite
 - Depth of the cavern is less than 300m
 - → Shape of the caver can be bullet shape rather than egg shape

Y. Sugimoto, ALCPG11, 20 March, 2011

The CMS plug is good example of a platform

4366-ILD-T-Platform-and-environment.ppt A. Hervé Seoul workshop 17 February 2009

Integrated Displacement σ (r.m.s.)

on the CMS plug

by Marco Oriunno at ALCPG11

4. Survey & Alignment Made by Masuzawa-san@KEKB Revire Sta Bear line & floor motion during Belle roll-out analyzed. Beam line floor & Cryostat (retracted) motion BeamLine IPR11 P10 **Tunnel Floor** JPR14 B4F+4200 B4F+1100 PR OCS OCS2 Wall B4F+4300 JPR01 JPR_QCS1 IPR QCS3 **B4** Floor 85 P2 P6 P9 88 P3 Pcenter Pi P4 **P**7 JPL QCS3 JPL QCS1 JPL01 JPL QCS2 IPL QCS4

Smalus

H.Yamaoka, ALCPG11, 19-23 March 2011, Eugene, USA

2011年 5月 20日 金曜日

JPL11

B4F+1500

P11

JPL14

Tunnel Floor

B4F+4200

Response acceleration @platform (Belle detector 1,300t, 90cm/min)

H.Yamaoka, ALCPG11, 19-23 March 2011, Eugene, USA

Response acceleration@ND280 (450t, 50cm/min, 1m/stroke)

Response acceleration → ~0.1G → ~0.01G(Belle)

Seismic criteria for the ND280

- → 0.5G
- \rightarrow 0.1G of Acc is less than the criteria.
- → But 10 time bigger than the Belle moving system.

(Belle detector 1,300t, 90cm/min)

4. Survey & Alignment Status : IR

Made by Masuzawa-san@KEKB Review

H.Yamaoka, ALCPG11, 19-23 March 2011, Eugene, USA

IP Region Final Doublet

Luminosity Loss vs. QD0 Jitter

- Data shown gives % nominal luminosity for different levels of uncorrelated QD0 jitter.
 - 100 pulses simulated per jitter cases with FFB
 - Mean, 10% & 90% CL results shown for each jitter point from 100 pulse simulations
- Tolerance to keep luminosity loss <1% is <50nm RMS QD0 jitter.

QD0 recently updated by B.Parker (BNL)

Draft of "engineering specifications", 20 May 2011

Engineering Specifications (1) : Push Pull Issues	unit	value	SiD	ILD		
Time for Exchange experiments with rough alignment (mm)	day	1				
Time for Fine alignement, vacuum evacuation	day	1				
Time for Restart the machine and experiment	day	1				
Time for Beam calibration and alignment for the nominal luminosity	day	1				
Number of Pushpull operation	/year	10		10		
Number of Pushpull operation for 15 years	times	150	100	150		
Detector total weight	tons	15,000	10,000	15,000		
Detector beam level	m	9	7.4	8		
Maximum acceleration on the detectors during the movement	G	0.5	0.0001			
Total moving distance from IP to the garage position	m	15		25		
Residual magnetic field at IP from detector in the garage	Gauss	50		50		
Pulling forces with two lines (multiple anchoring points?)	tons/line	300				
Number of anchoring points		4				
Movement speed	cm/min	10	6			
Displacement due to the movement : radius	mm	20				
Displacement due to the movement : angle	mrad	2.5				
Adjustment of the movement : radius	mm	2				
Adjustment of the movement : angle	mrad	0.2				
Slow downward movement of the floor within ± 50 m around IP (for several	mm	5				
weeks?) with feedback system		~				
Platform : width	m		20	14		
Platform : length	m		20	14.8		
Platform : thickness	m		2.8	2.2		
Platform : wall clearance	mm		10			
Platform : max. vibration transfer function for microseisms	1 <f<100hz< td=""><td></td><td>1.5</td><td></td></f<100hz<>		1.5			
Platform : pulling force in locomotion system with rollers	tons	750	500	750		
Platform : pulling force in locomotion system with airpads	tons	300		300		
Roller : a roller system must be supplemented by another system that allows a .	3-axis movement	nt on IP. A go	od candidate	would be a		
grease-pad system on top of the roller supporting platform.						
Airpad : Standard airpad systems have the disadvantage of requiring a slight lift of the load of around 5 mm. However as the landing						
is obtained by leaking air through orifices this landing is very smooth as it had	been verified by	y installing ac	celerometers	on CMS		
elements.						
hydraulic jacks :						

Draft of "engineering specifications", 20 May 2011

Engineering Specifications (2) : Experimetnal Hall	RDR	SiD	ILD	ILD in Mtn. site			
Parameters that de	fine the underground	hall volume					
IR Hall Area(m); (W x L)	25x120						
Beam height above IR hall floor (m)	8.6	9(7.5)	8(9)	9			
IR Hall Crane Maximum Hook Height Needed(m)	20.5	5m above top of detector	20.5	20.5			
Largest Item to Lift in IR Hall (weight and dimensions)	400t	100t PACMAN	55t, 3x3x1.5m	400t			
IR Hall Crane	400t+2*20t	100t/10t	80t	400t			
IR Hall Crane Clearance Above Hook to the roof (m)	14.5(includes arch)		6				
Survice caverns(m); (W x L xH)	none			15x25x11			
Resulted total size of the collider hall (W x L x H)	25x120x39	28x48x30					
Parameters that define dimens	sions of the IR hall sh	naft and the shaft cro	ine				
Largest Item; Heaviest item to Lower Through IR Shaft (weight and dimensions)	9x16m, 2000t	600t	3411t, 15.7x8m (ring 2.7m thick)	-			
IR Shaft Size : diameter(m)	16	9	16	-			
IR shaft fixed surface gantry crane. If rented, duration	1.5 years	1.5 years	1.5 years	-			
Surface hall crane should serve IR shaft	Yes	Yes	Yes	-			
Other shafts near IR hall for access	No	Yes	No	-			
Elevator and stares in collider hall shaft	Yes	?	Yes				
Size of access tunnel at Mtn. site (W x H, m)	-	-	-	11x11, 10.2x7.2			
Parameters that define dimensions of the surface assembly building and its crane							
Surface Assembly Building Area ((W x L, m)	25 x 100		30x60	27x100			
Largest Item to Lift in SurfAsm. Bldg. (weight and dimensions)	400t	70t	180t	180t			
Surface Assembly Crane	400t+2*20t	100t/10t	2x80t	400t			
SurfAsm. Crane Maximum Hook Height Needed(m)	18	20	19	25			
SurfAsm. Crane Clearance Above Hook to the roof (m)	7		5m to ceiling				
Resulted volume of surface assembly building (W x L x H, m)	25 x 100 x 25		30x60x24				
Parameters that define crane	access area and clea	rance around detect	tor				
SurfAsm. crane accessible area (needed) / available (W x L, m)	20 x 102		28x56				
IR hall crane accessible area (needed) / available (W x L, m)	22 x 98		28x41	18x39			
Maximum Detector Height(m)		16.15	15.74	15.74			
Detector Width (m)		18.53(14.334)	15.665	15.665			
Minimum Detector Clearance (W x L H, m)			15.67x13.26x15.74	15.67x13.26x15.74			
FILL IN OTHER IMPORTAL	NT PARAMETERS W	HICH ARE MISSIN	G				
Electronic hut size			18x9x10m				
Electronic hut location							
When the electronic hut is installed underground							

Draft of "engineering specifications", 20 May 2011

Engineering Specifications (3) : QD0 Issues	unit	value	
Mover : number of degrees of freedom		5	horizontal x, vertical y, pitch φ , yaw ψ , roll α
Mover : Range per x,y degree of freedom	mm	± 2	
Mover : Range per ϕ , ψ degree of freedom	mrad	± 1	
Mover : Range per α degree of freedom	mrad	± 30	
Mover : Step size per degree of freedom of motion	μm	± 0.05	
Before BBA : Accuracy per x,y degree of freedom	μm	± 50	
Before BBA : Accuracy per φ , ψ degree of freedom	µrad	± 20	
Before BBA : Accuracy per α degree of freedom	mrad	± 20	
BBA : alignment accuracy per x,y	nm	± 200	from a line determined by QF1s for 200ms
BBA : Accuracy per α degree of freedom	μrad	± 0.1	from a line determined by QF1s for 200ms
Vibration stability : $\Delta(QD0(e^+)-QD0(e^-))$	nm	50	within 1ms long bunch train

Engineering Specifications (4) : Radiation shield	unit	value	
Self shielding		must	
Normal operation : anywhere beyond the 15m zone housing the off-beamline detector	μSv/hour	0.5	
Accidental beam loss : dose for occupational workers	mSv/hour	250	The acident is defined as the simultaneous loss of
Accidental beam loss : integrated doze for occupational workers	mSv/accident	1	both e^+ and e^- beams at 250 GeV/beam
Accidental beam loss : beam shut-off time after the accident	beam-train	1	anywhere, at maximum beam power.

Engineering Specifications (5) : Vacuum	unit	value	
in the 200m upstream of the IP	nTorr	1	$=1.3 \times 10^{-7} \text{ Pa}$
in the remainder of the BDS system	nTorr	10	$=1.3 \times 10^{-6} \text{ Pa}$
in the 18m zone of the detector			not specified in the IR document

Conclusions

- Platform system was chosen for the push pull operation at ALCPG11.
- MDI continues to study based on the work plan with milestones for the DBD/TDR and additional resources by the ILCSC.
- Draft of the engineering specifications was made for designs of the push-pull system and experimental hall with collaboration of the CFS group.
- \cdot We will enlarge the synergy with CLIC.