



# ILD integration status and open issues

Matthieu Joré – 22<sup>nd</sup> of June

jore@lal.in2p3.fr









- Introduction
- Hadron calorimeters integration
  - AHCal barrel
  - SDHCal barrel
  - EndCap
- Inner region
  - Status
  - Current assembly procedure
  - Some open issues
- Conclusions



### **ILD** overview









- For 2012 :
  - Complete basic mechanical integration of the baseline design accounting for insensitive zones such as the beam holes, support structure, cables, gaps or inner detector material
  - Develop a realistic simulation model of the baseline design, including the identified faults and limitations
- Goals for this ILD workshop :
  - Define a software baseline for mass production
    - Each sub detector must show that they could be integrated in ILD
  - Estimate as much as possible the insensitive material
    - Especially for the inner region !



## **ILD Integration tree**





ILD meeting 2011 @ LAL

#### M. Joré – Integration status





## Hadron Calorimeters integration







- Mechanical concept :
  - Made of 2 rings
  - 16 modules / rings
  - Module is made of bolted SS plates
  - Electronic card and tile inserted along the axis
  - Tilt of 22.5° for the rail integration







- Recent updates have been done to integrate the model in ILD
  - Dimensions now fit the requirements









- AHCal barrel design :
  - Crack at z=0
    - Could have two different length for the rings
  - Integration of the rails system with the cryostat
    - Could be similar to CMS system
- Integration :
  - Impact of the 22.5° tilt on the Ecal should be OK
  - New design of the Ecal Leakless system to be performed



## SDHCal barrel



- Mechanical concept (JC lanigro):
  - Made of 5 rings
  - Structure "a la Videau" with 8 modules
  - RPC are inserted radialy
  - Electronic and services between cryostat and ring
    - Might allow to reduce the overlap dimension





From MC Fouz at CALICE meeting 2011





- Now integrated into the ILD Cad model
- Detailed study on cabling will be done (C. Clerc)
  - Reducing the overlap seems possible





### **SDHCal** issues



• Barrel :

### - Dimensions should be revisited to allow some clearance with the cryostat

- Impact on the sensitive part
- New design of the services

#### Rails system should be studied

- Could be the same as the AHCal
- Arround 50mm is needed



- Integration :
  - Design of the Ecal leakless system
  - Estimation of the total amount of cables in order to optimise the overlap dimension







- First design of the EndCap Hcal proposed by Jean Christophe but fits to both concept (RPC or scintillator)
  - Build in 4 module
  - Fixation to the yoke must be studied
    - Must decouple yoke and HCal
  - Mechanical behaviour must be understood











AHCal

SDHCal





# Inner region integration



### Inner region - reminder









- Some progress has been made on VTX by J. Baudot and al.
  - Estimation of mechanical material
  - First estimation of cables and power needs
  - Cooling depends on the technology :
    - Air flow for CMOS
    - CO2 evaporation in pipes for CCD -> real cryostat





VTX in the ILD CAD model



### Updates on FTD 3->7



- On FTD3->7 by David Moya and al.
  - Mechanical design of petals
  - Estimation of the cable amount and positions
  - Cooling must be studied (probably air cooling)







- David also performed FEA calculations on the tube
- Results :
  - Material used for the composite: MTM45/IM7
  - Cylinder eight Layers 1,04 mm thickness with 0%90%45%-45% config.
  - Rings four Layers 0,52 mm thickness





### Current assembly procedure









- SIT :
  - Mechanical structure?
  - Cables amount and path ?
  - Cooling
  - No one identified at the moment
- FTD1&2 cables and support?
- BP support : wires?
- Tooling
- Etc...





- FTD1&2 use Pixel sensors
  - Might need a cryostat and a faraday cage as the Vertex
- Discussion ongoing to review their integration :
  - Integrated in the same cryostat than the VTX
  - Position and dimensions would be modified
  - Integration procedure too
  - Any comments?







- Hadron Calorimeters :
  - Both concepts are now integrated in the ILD CAD model
  - Some remaining issues :
    - Overlap region optimisation for the SDHCal (services integration)
    - Rail design on coil for both
    - EndCap design and fixation to the yoke
- Inner region
  - Better understanding of the VTX and the FTD 3->7
  - Still missing informations on the SIT and FTD1&2 !
  - Some information could be implemented into the simulation
    - Rough estimation of cables and route
    - CFRP supporting tube
- Still some remaining studies for DBD 2012 :
  - TPC fixation
  - Inner Supporting tube fixation and tuning
  - Forward region, etc...