

CLIC_ILD particle identification and tracking performance

J. Nardulli

This talk in 2 parts:

- → Particle-ID performance: efficiencies, purities and mis-identification rate
- Tracking performance: efficiency and fake rate

Part 1: Particle-Identification performance in CLIC_ILD

- For Efficiency and purity we take a list of MC-Particle and PFO of <u>same</u> PDG type
- Create lists of findable PFOs and MC-Particles
 - Cuts used

• Energy > 7.5 GeV

• Polar angle > 8 degrees

MC-Particles with Generator status equal to 1

- Match Energy and PFO on direction and Energy
 - Direction: PFO and MC-Particle inside a 1 degree cone
 - Energy/Momentum
 - For charged particles:
 - For neutral particles:
- Similarly when requiring to have particles with <u>different</u>
 PDG type, we look at the <u>mistag rate</u>

- For Efficiency and purity we take a list of MC-Particle and PFO of <u>same</u> PDG type
- Create lists of findable PFOs and MC-Particles
 - Cuts used

• Energy > 7.5 GeV

Polar angle> 8 degrees

MC-Particles with Generator status equal to 1

- Match Energy and PFO on direction and Energy
 - Direction: PFO and MC-Particle inside a 1 degree cone
 - Energy/Momentum
 - For charged particles:
 - For neutral particles:
- Similarly when requiring to have particles with <u>different</u>
 PDG type, we look at the <u>mistag rate</u>

- For Efficiency and purity we take a list of MC-Particle and PFO of <u>same</u> PDG type
- Create lists of findable PFOs and MC-Particles
 - Cuts used

• Energy > 7.5 GeV

Polar angle> 8 degrees

MC-Particles with Generator status
 equal to 1

- Match Energy and PFO on direction and Energy
 - Direction: PFO and MC-Particle inside a 1 degree cone
 - Energy/Momentum
 - For charged particles: $|p_T(MC) p_T(PFO)| < 5\% \times p_T^2(MC)$
 - For neutral particles : $|E_{MC}-E_{PFO}| < 200\% imes \sqrt{E_{MC}} + 50\%$
- Similarly when requiring to have particles with <u>different</u>
 PDG type, we look at the <u>mistag rate</u>

- For Efficiency and purity we take a list of MC-Particle and PFO of <u>same</u> PDG type
- Create lists of findable PFOs and MC-Particles
 - Cuts used

Energy > 7.5 GeV

• Polar angle > 8 degrees

MC-Particles with Generator status equal to 1

- Match Energy and PFO on direction and Energy
 - Direction: PFO and MC-Particle inside a 1 degree cone
 - Energy/Momentum
 - For charged particles: $|p_T(MC) p_T(PFO)| < 5\% \times p_T^2(MC)$
 - For neutral particles : $|E_{MC}-E_{PFO}| < 200\% imes \sqrt{E_{MC}} + 50\%$
- Similarly when requiring to have particles with <u>different</u>
 PDG type, we look at the <u>mistag rate</u>

Definitions

Efficiency:

→ matched MCParticles/findable MCParticles

Purity:

→ Matched PFOs/findable PFOs

Mistag rate:

- → matched –different PDG- MCParticles/findable MCParticles
- → These definitions are per MCParticle and per Event
- \rightarrow Plots in the next slides produced with particle guns electrons, photons, muons and pions generated in all the θ and φ spectrum with energies up to 400 GeV

B Electrons: Efficiency

B Electrons: Purity

Photons: Efficiency

Photons: Purity

Pions: Efficiency

22/5/2011

Pε

Pions: Purity

Muons: Efficiency and purity for 10 GeV particles

Muons: Efficiency for $Z \rightarrow bb$ events

Average efficiency and purity for all particles in CLIC_ILD_CDR

Particle	Efficiency	Purity
Electron	$96\% \pm 1\%$	$97\% \pm 1\%$
Photon	$93\% \pm 1\%$	$96\% \pm 1\%$
Pion	$96\% \pm 1\%$	$99\% \pm 1\%$
Muon	$99\% \pm 1\%$	$100\% \pm 1\%$

 \rightarrow Plots in the previous slides produced with particle guns electrons, photons, muons and pions generated in all the θ and φ spectrum with energies up to 400 GeV

Average mistag rate per event for all particles in CLIC_ILD_CDR

Mistag rate in CLIC_ILD_CDR

Conclusions

Efficiency and Purity

Efficiency and purity are above 90% for all particles considered

Mistag rate

- Apart from the less interesting 1 GeV case
- For 100 and 500 GeV for all particles the mistag rate is always < 2%
- At 10 GeV we have higher values for electrons, mostly mistagged as pions
- Mistagged Pions are found mostly at PFO level as electrons
- Gammas are found as neutrons and Pions

Part 2: Tracking performance in CLIC_ILD

Tracking performance algorithm

- For the Tracking Efficiency we make a list of findable MC-Particles
 - Cuts used
 - Energy
 - Polar angle
 - Charge
 - Flight distance cut
 - Origin of MC interaction point

- > 250 MeV
- > 8 degrees
- different from 0
- Default value > 50 mm
- Default value < 50 mm
- Then Loop over all the tracks and all the MC-Particles
- For every track try to match it to a MCParticle
 - If you succeed <u>and your MC Particle is findable</u> → you're efficient
 - If you succeed and your MC Particle is NOT findable → your track is not a fake
 - If you do not succeed, \rightarrow your track is a fake
- Matching Criteria:
 - Nr of hits of a track, that belong to the MCParticle you want to match $\geq 75\%$

Tracking performance algorithm

- For the Tracking Efficiency we make a list of findable MC-Particles
 - Cuts used
 - Energy
 - Polar angle
 - Charge
 - Flight distance cut
 - Origin of MC interaction point |

- > 250 MeV
- > 8 degrees
- different from 0
- Default value > 50 mm
- Default value < 50 mm
- Then Loop over all the tracks and all the MC-Particles
- For every track try to match it to a MCParticle
 - If you succeed <u>and your MC Particle is findable</u> → you're efficient
 - If you succeed and your MC Particle is NOT findable → your track is not a fake
 - If you do not succeed,
 → your track is a fake
- Matching Criteria:
 - Nr of hits of a track, that belong to the MCParticle you want to match $\geq 75\%$

Tracking performance algorithm

- For the Tracking Efficiency we make a list of findable MC-Particles
 - Cuts used
 - Energy
 - Polar angle
 - Charge
 - Flight distance cut
 - Origin of MC interaction point

- > 250 MeV
- > 8 degrees
- different from 0
- Default value > 50 mm
- Default value < 50 mm
- Then Loop over all the tracks and all the MC-Particles
- For every track try to match it to a MCParticle
 - If you succeed <u>and your MC Particle is findable</u> → you're efficient
 - If you succeed and your MC Particle is NOT findable → your track is not a fake
 - If you do not succeed,→ your track is a fake
- Matching Criteria:
 - Nr of hits of a track, that belong to the MCParticle you want to match $\geq 75\%$

Efficiency:

→ matched Tracks/findable MCParticles

Fake Rate:

→ Not Matched Tracks/All Tracks

Results: Signal Efficiency

- Particle gun muons generated in all the θ and ϕ spectrum up to 400 GeV
- Reconstructed with and without background overlay [60 bunches of $\gamma\gamma \rightarrow$ hadrons]

Without background the fake rate is at 0.005%

Results: Signal Efficiency

- Particle gun muons generated in all the θ and ϕ spectrum up to 400 GeV
- Reconstructed with and without background overlay [60 bunches of $\gamma\gamma \rightarrow$ hadrons]

With background the fake rate is at ~10% -> see next slide

Results: Fake rate

- Particle gun muons generated in all the θ and ϕ spectrum up to 400 GeV
- Reconstructed with and without background overlay [60 bunches of $\gamma\gamma \rightarrow$ hadrons]

With background overlaid

Conclusions

- For single muons without overlaid background the tracking efficiency is ~100% and the fake rate is at 0.005%
- The overlaid background does NOT deteriorate the tracking efficiency for single muons
- While it increases the fake rate which goes to ~10%