Report from Common Task Group for Generators

Mikael Berggren¹

¹DESY Hamburg

ILD Meeting, Orsay, May 22 ,2011

Mikael Berggren (DESY-HH) Report from Common Task Group for General

ILD, May '11 1 / 16

-

• • • • • • • • • • • • •

Introduction

4 Current status of the Common Samples

5 Conclusions

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Common Task Group for Generators

A cross-region and cross-concept working group was created to look into the generator side Members

- Tim Barklow, SiD/Americas
- Akiya Miyamoto.ILD/Asia
- M.B., ILD/Europe
- Since, CLIC has also joined
 - Stephane Poss

Why not do as we did for the LOI ?

- Tim will not do it alone, due to his work-load
- There are a number of short-comings with the version of Whizard used:
 - Diagonal CKM
 - No tau polarisation in decays
 - Hadronisation tune in PYTHIA
 - Colour-flow and helicity information

Why not do as we did for the LOI ?

- Tim will not do it alone, due to his work-load
- There are a number of short-comings with the version of Whizard used:
 - Diagonal CKM
 - No tau polarisation in decays
 - Hadronisation tune in PYTHIA
 - Colour-flow and helicity information

- For the DBD, there are new bench-marks:
 - $e^+e^- \rightarrow \nu \bar{\nu} h^0$
 - $e^+e^- \rightarrow W^+W^-$
 - $e^+e^- \rightarrow t\bar{t}h^0$
- All at another *E_{CMS}*=1TeV
- Machine backgrounds and same-bunch crossing $\gamma\gamma$ events should be overlaid (in some way...)
- At least for $t\bar{t}h^0$, backgrounds with 8 or even 10 fermions might be needed.
- The LHC runs.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For the DBD, there are new bench-marks:
 - $e^+e^- \rightarrow \nu \bar{\nu} h^0$
 - $e^+e^- \rightarrow W^+W^-$
 - $e^+e^- \rightarrow t\bar{t}h^0$
- All at another *E_{CMS}*=1TeV
- Machine backgrounds and same-bunch crossing $\gamma\gamma$ events should be overlaid (in some way...)
- At least for $t\bar{t}h^0$, backgrounds with 8 or even 10 fermions might be needed.
- The LHC runs.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The task

What is needed for the DBD

- For the DBD, there are new bench-marks:
 - $e^+e^- \rightarrow \nu \bar{\nu} h^0$
 - $e^+e^- \rightarrow W^+W^-$
 - $e^+e^- \rightarrow t\bar{t}h^0$
- All at another *E_{CMS}*=1TeV
- Machine backgrounds and same-bunch crossing γγ events should be overlaid (in some way...)
- At least for *tth*⁰, backgrounds with 8 or even 10 fermions might be needed.
- The LHC runs.

The task

What is needed for the DBD

- For the DBD, there are new bench-marks:
 - $e^+e^- \rightarrow \nu \bar{\nu} h^0$
 - $e^+e^- \rightarrow W^+W^-$
 - $e^+e^- \rightarrow t\bar{t}h^0$
- All at another *E_{CMS}*=1TeV
- Machine backgrounds and same-bunch crossing γγ events should be overlaid (in some way...)
- At least for $t\bar{t}h^0$, backgrounds with 8 or even 10 fermions might be needed.
- The LHC runs.

Generator choice

SM will be done with Whizard

• Whizard version by choice : 1.95. Has

- CKM correct
- Colour flow
- Spin
- Latest version at the time of the decision was 2.0.2, but "Note that some of the features of WHIZARD 1 (esp. ILC) have not yet been re-enabled." (Whizard home-page).
- Fragmentation: Latest PYTHIA6 (6.422). PYTHIA8 is out but "To some extent this switch is nominal, since 8.1 does not yet offer a complete replacement of 6.4, and is not yet tested and tuned enough to be recommended for major production runs." (PYTHIA home-page).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generator choice

SM will be done with Whizard

- Whizard version by choice : 1.95. Has
 - CKM correct
 - Colour flow
 - Spin
- Latest version at the time of the decision was 2.0.2, but "Note that some of the features of WHIZARD 1 (esp. ILC) have not yet been re-enabled." (Whizard home-page).
- Fragmentation: Latest PYTHIA6 (6.422). PYTHIA8 is out but "To some extent this switch is nominal, since 8.1 does not yet offer a complete replacement of 6.4, and is not yet tested and tuned enough to be recommended for major production runs." (PYTHIA home-page).

Generator choice

SM will be done with Whizard

- Whizard version by choice : 1.95. Has
 - CKM correct
 - Colour flow
 - Spin
- Latest version at the time of the decision was 2.0.2, but "Note that some of the features of WHIZARD 1 (esp. ILC) have not yet been re-enabled." (Whizard home-page).
- Fragmentation: Latest PYTHIA6 (6.422). PYTHIA8 is out but "To some extent this switch is nominal, since 8.1 does not yet offer a complete replacement of 6.4, and is not yet tested and tuned enough to be recommended for major production runs." (PYTHIA home-page).

- PYTHIA 6.422 is used for hadronisation. After evaluation of the tunings from the LEP collaborations, we decided to use OPAL.
- Tau-polarisation in decay: TAUOLA interface standardised, for polarisation-dependent *τ*-decays. Also for *τ*'s in fragmentation W → τν. Verified to work correctly - Thanks for advice Gudi!
- Extension of information in the event record:
 - Colour singlet system information and particle spin.
 - Beam-particles before and after beam-strahlung.
 - Process ID in each event record.
- Coding of FSR: Mokka modified to be insensitive (as SLiC already was).
- Flavour-summed channels. After all, who cares if it is a u,d, or s quark ? Will reduce the 2348 channels to a few tens. Two options:
 - Sum in phase-space evaluation: Higher gain in simplicity and CPU-time, but less flexible.
 - Channel mixing in generation: Any set of channels can be merged.

Both options are pursued, as well as mixes of them. = , . = ,

Mikael Berggren (DESY-HH)

Report from Common Task Group for General

- PYTHIA 6.422 is used for hadronisation. After evaluation of the tunings from the LEP collaborations, we decided to use OPAL.
- Tau-polarisation in decay: TAUOLA interface standardised, for polarisation-dependent τ -decays. Also for τ 's in fragmentation $W \rightarrow \tau \nu$. Verified to work correctly Thanks for advice Gudi!
- Extension of information in the event record:
 - Colour singlet system information and particle spin.
 - Beam-particles before and after beam-strahlung.
 - Process ID in each event record.
- Coding of FSR: Mokka modified to be insensitive (as SLiC already was).
- Flavour-summed channels. After all, who cares if it is a u,d, or s quark ? Will reduce the 2348 channels to a few tens. Two options:
 - Sum in phase-space evaluation: Higher gain in simplicity and CPU-time,but less flexible.
 - Channel mixing in generation: Any set of channels can be merged.

Both options are pursued, as well as mixes of them. = , . = ,

Mikael Berggren (DESY-HH)

Report from Common Task Group for General

- PYTHIA 6.422 is used for hadronisation. After evaluation of the tunings from the LEP collaborations, we decided to use OPAL.
- Tau-polarisation in decay: TAUOLA interface standardised, for polarisation-dependent τ -decays. Also for τ 's in fragmentation $W \rightarrow \tau \nu$. Verified to work correctly Thanks for advice Gudi!
- Extension of information in the event record:
 - Colour singlet system information and particle spin.
 - Beam-particles before and after beam-strahlung.
 - Process ID in each event record.
- Coding of FSR: Mokka modified to be insensitive (as SLiC already was).
- Flavour-summed channels. After all, who cares if it is a u,d, or s quark ? Will reduce the 2348 channels to a few tens. Two options:
 - Sum in phase-space evaluation: Higher gain in simplicity and CPU-time, but less flexible.
 - Channel mixing in generation: Any set of channels can be merged.

Both options are pursued, as well as mixes of them, a , , a

Mikael Berggren (DESY-HH)

Report from Common Task Group for General

- PYTHIA 6.422 is used for hadronisation. After evaluation of the tunings from the LEP collaborations, we decided to use OPAL.
- Tau-polarisation in decay: TAUOLA interface standardised, for polarisation-dependent *τ*-decays. Also for *τ*'s in fragmentation W → τν. Verified to work correctly - Thanks for advice Gudi!
- Extension of information in the event record:
 - Colour singlet system information and particle spin.
 - Beam-particles before and after beam-strahlung.
 - Process ID in each event record.
- Coding of FSR: Mokka modified to be insensitive (as SLiC already was).
- Flavour-summed channels. After all, who cares if it is a u,d, or s guark ? Will reduce the 2348 channels to a few tens. Two options:
 - Sum in phase-space evaluation: Higher gain in simplicity and CPU-time,but less flexible.
 - Channel mixing in generation: Any set of channels can be merged.

Both options are pursued, as well as mixes of them. = , . =

Mikael Berggren (DESY-HH)

Report from Common Task Group for General

- PYTHIA 6.422 is used for hadronisation. After evaluation of the tunings from the LEP collaborations, we decided to use OPAL.
- Tau-polarisation in decay: TAUOLA interface standardised, for polarisation-dependent τ -decays. Also for τ 's in fragmentation $W \rightarrow \tau \nu$. Verified to work correctly Thanks for advice Gudi!
- Extension of information in the event record:
 - Colour singlet system information and particle spin.
 - Beam-particles before and after beam-strahlung.
 - Process ID in each event record.
- Coding of FSR: Mokka modified to be insensitive (as SLiC already was).
- Flavour-summed channels. After all, who cares if it is a u,d, or s quark ? Will reduce the 2348 channels to a few tens. Two options:
 - Sum in phase-space evaluation: Higher gain in simplicity and CPU-time,but less flexible.
 - Channel mixing in generation: Any set of channels can be merged.

Both options are pursued, as well as mixes of them.

Mikael Berggren (DESY-HH) Report from Common Task Group for General

Tools for productions of generator samples

- Tim's scripts to run Whizard jobs at the SLAC batch server migrated and adapted to the KEK environment, and to DESY.
- An SVN project holding Whizard source-code, installation scripts and process-description files has been set up at CERN by Stephane.
- As generation production will now be distributed → An information file with file-locations, generator settings, etc. should be updated by each generation job.

This information could then be entered into each concepts own full-fledged production database. A proposal by is on the table.

Tools for productions of generator samples

- Tim's scripts to run Whizard jobs at the SLAC batch server migrated and adapted to the KEK environment, and to DESY.
- An SVN project holding Whizard source-code, installation scripts and process-description files has been set up at CERN by Stephane.
- As generation production will now be distributed → An information file with file-locations, generator settings, etc. should be updated by each generation job.

This information could then be entered into each concepts own full-fledged production database. A proposal by is on the table.

Tools for productions of generator samples

- Tim's scripts to run Whizard jobs at the SLAC batch server migrated and adapted to the KEK environment, and to DESY.
- An SVN project holding Whizard source-code, installation scripts and process-description files has been set up at CERN by Stephane.
- As generation production will now be distributed → An information file with file-locations, generator settings, etc. should be updated by each generation job.

This information could then be entered into each concepts own full-fledged production database. A proposal by is on the table.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Current status of the Common Samples

Status of generator samples

Disclaimer: Right now, none of the final DBD samples can be produced, because there are no official 1 TeV beam-parameters from the GDE, yet !

Status of generator samples : $\nu\nu h$

Assigned to Tim B.

• $\nu\nu h$: Includes $h \rightarrow gg$ and WW^* , so need 6-fermion background.

- Potentially large advantage with aliasing, esp. when Cabibbo suppressed decays included.
- However: Integration gets very time-consuming with aliasing \rightarrow go back to to separate final states
- Advancing well: Full sample ready to be generated. Pilot generation of 100k + additional $h \rightarrow \mu\mu$ ongoing.

< 日 > < 同 > < 回 > < 回 > < □ > <

Status of generator samples : $\nu\nu h$

Assigned to Tim B.

- $\nu\nu h$: Includes $h \rightarrow gg$ and WW^* , so need 6-fermion background.
 - Potentially large advantage with aliasing, esp. when Cabibbo suppressed decays included.
 - However: Integration gets very time-consuming with aliasing→ go back to to separate final states
 - Advancing well: Full sample ready to be generated. Pilot generation of 100k + additional $h \rightarrow \mu\mu$ ongoing.

Status of generator samples : $\nu\nu h$

Assigned to Tim B.

- $\nu\nu h$: Includes $h \rightarrow gg$ and WW^* , so need 6-fermion background.
 - Potentially large advantage with aliasing, esp. when Cabibbo suppressed decays included.
 - However: Integration gets very time-consuming with aliasing→ go back to to separate final states
 - Advancing well: Full sample ready to be generated. Pilot generation of 100k + additional $h \rightarrow \mu\mu$ ongoing.

Assigned to Akiya

- *ttH*: 8 fermions background, Very difficult for Whizard:
 - H+4-jet+ $l\nu$ signal: 2 days CPU for integration to converge with 0.3
 - H+6-jet signal: 700 Whizard channels in one aliased process. 14 days for 4 iterations of integration and 3 % accuracy (typically 10 iterations needed)
 - 6-jet+ $l\nu$ background: failed to generate the Fortran code describing the diagrams.
- Alternatives:
 - simplify Whizard
 - Generate 8 fermions as 6 fermions+Z.
 - But then F_Z = 0.
 - Physsim
 - ttH (ie. 6fH), ttf (ie. 8f) by Helas (helicity amplitude approach).
 - But: While the effect of ISR of the beam-spectrum is included, Nice

Assigned to Akiya

- *ttH*: 8 fermions background, Very difficult for Whizard:
 - H+4-jet+lv signal: 2 days CPU for integration to converge with 0.3
 - H+6-jet signal: 700 Whizard channels in one aliased process. 14 days for 4 iterations of integration and 3 % accuracy (typically 10 iterations needed)
 - 6-jet+ $l\nu$ background: failed to generate the Fortran code describing the diagrams.

Alternatives:

- simplify Whizard
 - Generate 8 fermions as 6 fermions+Z.
 - But then $\Gamma_Z = 0$.
- Physsim
 - itil (ie: 6fH), itif (ie: 8f) by Helas (helicity amplitude approach).
 - But: While the effect of ISR of the beam-spectrum is included, Ne

(日)

Assigned to Akiya

- *ttH*: 8 fermions background, Very difficult for Whizard:
 - H+4-jet+lv signal: 2 days CPU for integration to converge with 0.3
 - H+6-jet signal: 700 Whizard channels in one aliased process. 14 days for 4 iterations of integration and 3 % accuracy (typically 10 iterations needed)
 - 6-jet+ $l\nu$ background: failed to generate the Fortran code describing the diagrams.

Alternatives:

- simplify Whizard
 - Generate 8 fermions as 6 fermions+Z.
 - But then $\Gamma_Z = 0$.
- Physsim
 - ttH (ie. 6fH), ttff (ie. 8f) by Helas (helicity amplitude approach)
 - But: While the effect of ISR of the beam-spectrum is included, No ISR- γ generated, nor any ρ_T kick by ISR to the event.
 - Colour/Spin info: Available in Whizard output, but not in Physsim

Assigned to Akiya

- *ttH*: 8 fermions background, Very difficult for Whizard:
 - H+4-jet+lv signal: 2 days CPU for integration to converge with 0.3
 - H+6-jet signal: 700 Whizard channels in one aliased process. 14 days for 4 iterations of integration and 3 % accuracy (typically 10 iterations needed)
 - 6-jet+ $l\nu$ background: failed to generate the Fortran code describing the diagrams.
- Alternatives:
 - simplify Whizard
 - Generate 8 fermions as 6 fermions+Z.
 - But then $\Gamma_Z = 0$.
 - Physsim
 - ttH (ie. 6fH), ttff (ie. 8f) by Helas (helicity amplitude approach)
 - But: While the effect of ISR of the beam-spectrum is included, No ISR→ generated, nor any pr kick by ISR to the event.
 - Colour/Spin info: Available in Whizard output, but not in Physsin

Assigned to Akiya

- *ttH*: 8 fermions background, Very difficult for Whizard:
 - H+4-jet+lv signal: 2 days CPU for integration to converge with 0.3
 - H+6-jet signal: 700 Whizard channels in one aliased process. 14 days for 4 iterations of integration and 3 % accuracy (typically 10 iterations needed)
 - 6-jet+ $l\nu$ background: failed to generate the Fortran code describing the diagrams.
- Alternatives:
 - simplify Whizard
 - Generate 8 fermions as 6 fermions+Z.
 - But then $\Gamma_Z = 0$.
 - Physsim
 - ttH (ie. 6fH), ttff (ie. 8f) by Helas (helicity amplitude approach).
 - But: While the effect of ISR of the beam-spectrum is included, No ISR- γ generated, nor any p_T kick by ISR to the event.
 - Colour/Spin info: Available in Whizard output, but not in Physsim

- Whizard Physsim comparison :
 - Higgs energy distribution at tree level is consistent.
 - Difference is small: plot shows 8.3 ab⁻¹ statistics

After hadronisation: E_{γ}

- Whizard makes two ISR- in each event.
- Physsim does not generate ISR-γ
- However, *E_γ* of other *γ*:s agrees.
- NB: ISR-γ is forward peaked, but also some in central region (4% of events include γ with E>10GeV, |cosθ| < 0.9)

• Other particles show only small differences.

Mikael Berggren (DESY-HH)

Report from Common Task Group for General

ILD. May '11 13 / 16

After hadronisation: E_{γ}

- Whizard makes two ISR- in each event.
- Physsim does not generate ISR-γ
- However, E_{γ} of other γ :s agrees.
- NB: ISR-γ is forward peaked, but also some in central region (4% of events include γ with E>10GeV, |cosθ| < 0.9)

• Other particles show only small differences.

Mikael Berggren (DESY-HH)

ILD. May '11 13 / 16

- After hadronisation: E_{γ}
 - Whizard makes two ISR- in each event.
 - Physsim does not generate ISR-γ
 - However, E_{γ} of other γ :s agrees.
 - NB: ISR-γ is forward peaked, but also some in central region (4% of events include γ with E>10GeV, |cosθ| < 0.9)

 Other particles show only small differences.

Mikael Berggren (DESY-HH)

Report from Common Task Group for General

ILD. May '11 13 / 16

- After hadronisation: E_{γ}
 - Whizard makes two ISR- in each event.
 - Physsim does not generate ISR-γ
 - However, E_{γ} of other γ :s agrees.
 - NB: ISR-γ is forward peaked, but also some in central region (4% of events include γ with E>10GeV, |cosθ| < 0.9)

< ロ > < 同 > < 回 > < 回 >

• Other particles show only small differences.

Mikael Berggren (DESY-HH)

• Nevertheless, these difference would be not critical for benchmark studies.

• To do with Physsim:

- Hadroniser update. Either:
 - Switch from Tauola v5 to DESY-Tauola (v7)
 - Onuse its Inspend call from our customised Whiterd, instead of the hadronised in Physian.
- Include equivalent photon approximation (EPA) for ISR, as is done in Whizard.

- Nevertheless, these difference would be not critical for benchmark studies.
- To do with Physsim:
 - Hadroniser update. Either:
 - Switch from Tauola v5 to DESY-Tauola (v7)
 - Or use ilc_fragment_call from our customised Whizard, instead of the hadroniser in Physsim
 - Include equivalent photon approximation (EPA) for ISR, as is done in Whizard.

- Nevertheless, these difference would be not critical for benchmark studies.
- To do with Physsim:
 - Hadroniser update. Either:
 - Switch from Tauola v5 to DESY-Tauola (v7)
 - Or use ilc_fragment_call from our customised Whizard, instead of the hadroniser in Physsim
 - Include equivalent photon approximation (EPA) for ISR, as is done in Whizard.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Nevertheless, these difference would be not critical for benchmark studies.
- To do with Physsim:
 - Hadroniser update. Either:
 - Switch from Tauola v5 to DESY-Tauola (v7)
 - Or use ilc_fragment_call from our customised Whizard, instead of the hadroniser in Physsim
 - Include equivalent photon approximation (EPA) for ISR, as is done in Whizard.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assigned to MB.

- WW: All setup at DESY.
 - Integration of all 4 fermion final-states: over-night job, with sub-per mil uncertainty on cross-section
 - Generation of 1 ab⁻¹ also over-night job for non-electron final states.
 - STDHEP:s on grid, log-files, steerings, diagram-plots, etc. on the web (http://www.desy.de/ berggren/4f_production/)
 - · Need some automatic error detection.
- Organisation:
 - Hierarchy: ZZ or WW or ZZWWmix / hadronic or leptonic or semi-leptonic / four beam polarisations
 - Separate single boson (XXee, XXveve or XXeve) final states (t-channel!) from rest.
 - Total number of cases = 36. Compare: 140 possible 4f final states × 4 polarisations without aliases+grouping.

Mikael Berggren (DESY-HH)

Report from Common Task Group for General

Assigned to MB.

- WW: All setup at DESY.
 - Integration of all 4 fermion final-states: over-night job, with sub-per mil uncertainty on cross-section
 - Generation of 1 ab⁻¹ also over-night job for non-electron final states.
 - STDHEP:s on grid, log-files, steerings, diagram-plots, etc. on the web (http://www.desy.de/ berggren/4f_production/)
 - Need some automatic error detection.

• Organisation:

- Hierarchy: ZZ or WW or ZZWWmix / hadronic or leptonic or semi-leptonic / four beam polarisations
- Separate single boson (XXee, XXveve or XXeve) final states (t-channel!) from rest.
- Total number of cases = 36. Compare: 140 possible 4f final states × 4 polarisations without aliases+grouping.

Mikael Berggren (DESY-HH)

Report from Common Task Group for General

Assigned to MB.

- WW: All setup at DESY.
 - Integration of all 4 fermion final-states: over-night job, with sub-per mil uncertainty on cross-section
 - Generation of 1 ab⁻¹ also over-night job for non-electron final states.
 - STDHEP:s on grid, log-files, steerings, diagram-plots, etc. on the web (http://www.desy.de/ berggren/4f_production/)
 - Need some automatic error detection.
- Organisation:
 - Hierarchy: ZZ or WW or ZZWWmix / hadronic or leptonic or semi-leptonic / four beam polarisations
 - Separate single boson (XXee,XXν_eν_e or XXeν_e) final states (t-channel!) from rest.
 - Total number of cases = 36. Compare: 140 possible 4f final states \times 4 polarisations without aliases+grouping.

NB: Cross-sections are in the 10 pb⁻¹ range → we are asked to fully simulate tens of millions of events !!! < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Mikael Berggren (DESY-HH)

Report from Common Task Group for General

Assigned to MB.

- WW: All setup at DESY.
 - Integration of all 4 fermion final-states: over-night job, with sub-per mil uncertainty on cross-section
 - Generation of 1 ab⁻¹ also over-night job for non-electron final states.
 - STDHEP:s on grid, log-files, steerings, diagram-plots, etc. on the web (http://www.desy.de/ berggren/4f_production/)
 - Need some automatic error detection.
- Organisation:
 - Hierarchy: ZZ or WW or ZZWWmix / hadronic or leptonic or semi-leptonic / four beam polarisations
 - Separate single boson (XXee,XXν_eν_e or XXeν_e) final states (t-channel!) from rest.
 - Total number of cases = 36. Compare: 140 possible 4f final states \times 4 polarisations without aliases+grouping.
- NB: Cross-sections are in the 10 pb⁻¹ range → we are asked to fully simulate tens of millions of events !!!

Mikael Berggren (DESY-HH)

Report from Common Task Group for General

- Whizard, the main work-horse of the SM simulation, has been updated to the most current, ILC-usable version.
- The issues on list of needed amelioration have been solved.
- The way to feed information from generation to the production database must be designed and tested.
- Initial full-scale production of the WW sample at 1 TeVhas been done, and is soon coming for ννh.
- For *ttH*, Whizard can't take the load (esp for the 8f background). Alternative ways are investigated (simplify Whizard or Physsim)
- Larger scale test of the physics of new Whizard version and the new tune of fragmentation will be needed
- Work is also going on on background generation and overlay techniques.

- Whizard, the main work-horse of the SM simulation, has been updated to the most current, ILC-usable version.
- The issues on list of needed amelioration have been solved.
- The way to feed information from generation to the production database must be designed and tested.
- Initial full-scale production of the WW sample at 1 TeVhas been done, and is soon coming for ννh.
- For *ttH*, Whizard can't take the load (esp for the 8f background). Alternative ways are investigated (simplify Whizard or Physsim)
- Larger scale test of the physics of new Whizard version and the new tune of fragmentation will be needed
- Work is also going on on background generation and overlay techniques.

イロト 不得 トイヨト イヨト

- Whizard, the main work-horse of the SM simulation, has been updated to the most current, ILC-usable version.
- The issues on list of needed amelioration have been solved.
- The way to feed information from generation to the production database must be designed and tested.
- Initial full-scale production of the WW sample at 1 TeVhas been done, and is soon coming for ννh.
- For *ttH*, Whizard can't take the load (esp for the 8f background). Alternative ways are investigated (simplify Whizard or Physsim)
- Larger scale test of the physics of new Whizard version and the new tune of fragmentation will be needed
- Work is also going on on background generation and overlay techniques.

- Whizard, the main work-horse of the SM simulation, has been updated to the most current, ILC-usable version.
- The issues on list of needed amelioration have been solved.
- The way to feed information from generation to the production database must be designed and tested.
- Initial full-scale production of the *WW* sample at 1 TeVhas been done, and is soon coming for $\nu\nu h$.
- For *ttH*, Whizard can't take the load (esp for the 8f background). Alternative ways are investigated (simplify Whizard or Physsim)
- Larger scale test of the physics of new Whizard version and the new tune of fragmentation will be needed
- Work is also going on on background generation and overlay techniques.

- Whizard, the main work-horse of the SM simulation, has been updated to the most current, ILC-usable version.
- The issues on list of needed amelioration have been solved.
- The way to feed information from generation to the production database must be designed and tested.
- Initial full-scale production of the *WW* sample at 1 TeVhas been done, and is soon coming for $\nu\nu h$.
- For *ttH*, Whizard can't take the load (esp for the 8f background). Alternative ways are investigated (simplify Whizard or Physsim)
- Larger scale test of the physics of new Whizard version and the new tune of fragmentation will be needed
- Work is also going on on background generation and overlay techniques.

- Whizard, the main work-horse of the SM simulation, has been updated to the most current, ILC-usable version.
- The issues on list of needed amelioration have been solved.
- The way to feed information from generation to the production database must be designed and tested.
- Initial full-scale production of the *WW* sample at 1 TeVhas been done, and is soon coming for $\nu\nu h$.
- For ttH, Whizard can't take the load (esp for the 8f background). Alternative ways are investigated (simplify Whizard or Physsim)
- Larger scale test of the physics of new Whizard version and the new tune of fragmentation will be needed
- Work is also going on on background generation and overlay techniques.

- Whizard, the main work-horse of the SM simulation, has been updated to the most current, ILC-usable version.
- The issues on list of needed amelioration have been solved.
- The way to feed information from generation to the production database must be designed and tested.
- Initial full-scale production of the *WW* sample at 1 TeVhas been done, and is soon coming for $\nu\nu h$.
- For *ttH*, Whizard can't take the load (esp for the 8f background). Alternative ways are investigated (simplify Whizard or Physsim)
- Larger scale test of the physics of new Whizard version and the new tune of fragmentation will be needed
- Work is also going on on background generation and overlay techniques.