

Clupatra Topological TPC pattern recognition

Frank Gaede, DESY ILDWS Orsay, SW pre-meeting May 22, 2011

Introduction

- identified the need to replace old f77 tracking code in order to improve the sw-maintenance and the performance (background studies, 1 TeV, CLIC,...)
- need new TPC pattern recognition
- need new Kalman filter tool
 - chose KalTest (K.Fujii et al)
 - also used by LCTPC/MarlinTPC

TPC Pattern recognition

- patrec in a TPC should be rather easy
 - tracks immediately visible
 - "could be done by a kid with crayons"
- ILD TPC has a huge number of voxels >200 hits on many tracks
- classic triplet search and combinatorial Kalman filter probably overkill (CPU & coding intensive)
- mean distance between hits on track is mostly much smaller than distance between tracks
- > can use NN-CLustering
- micro curlers from pair bg should be removed beforehand

nearest neighbor clustering

use simple euclidian distance

use z-index + sliding window to speed up processing

- for merged clusters (duplicate pad row fraction):
 - cluster in pad row ranges (e.g. 15 rows) going inwards
 - identify clean track stubs
 - extend clean stubs forward & backward using Kaltest fitter
 - add Hit if delta(chi2) < 35.</p>
 - update track state !

example:

- ttbar event @ 500 GeV
- results in <u>clean tracks</u> and segments for curlers
- little leftover hits (red)
- some very close by tracks lost (taus/conversions)

- re-cluster in leftover hits (NN clustering)
- compute pad row multiplicity
- force into one, two or three clusters
- apply KalTest fit to throw out falsely merged hits (rare)
 - higher multiplicity to be done (very rare)

- gamma conversion in barrel
- forced into two tracks

- five prong tau forwardthree close-by tracks
 - forced into three tracks
- three prong tau barrel
 two close-by tracks forced into two tracks

- merge track segments (from curlers)
- based on rough (O(10%)) criterion for R, delta(xc,yc), tan(lambda)
- disallow z-overlaps

example:

- ttbar event @ 500 GeV
- works nicely
- few segments are not merged
- most of these curler segments where lost in on old pat rec

'The crazy muon'

Clupatra finds interleaved curlers to large extend
yellow: clupatra track - red: hits have been missed
this muon curls back into itself five times !

• don't need to deal with this often :-)

track finding efficiency I

TPC track finding efficiency - ttbar @ 500 GeV

- prompt tracks PCA(IP)<10cm
- > 5 TPC Hits
 - (pt >100 MeV)
 - (|cos(th) |>.99)

- comparison to LEPTracking pattern recognition
- NB: Clupatra has no reconstructed tracks yet
- and no quality cuts are applied
- high efficiency demonstrates that algorithm works and could replace old f77 code sometime soon

track finding efficiency II

TPC track finding efficiency - tau pairs @ 500 GeV

prompt tracks PCA(IP)<10cm
> 5 TPC Hits

- (pt >100 MeV)
- (|cos(th) |>.99)

comparison to LEPTracking pattern recognition NB: Clupatra has no reconstructed tracks yet and no quality cuts are applied

high efficiency demonstrates that algorithm works and could replace old f77 code sometime soon

track finding efficiency III

non-prompt tracks

- rho_vtx > 10cm parent charge==0
- mostly vzeros and conversions
- > 5 TPC Hits
- (pt >100 MeV)
- (|cos(th) |>.99)

comparison to LEPTracking pattern recognition NB: Clupatra has no reconstructed tracks yet and no quality cuts are applied

need to study if we can gain for v0/conversion reconstruction

11

Summary & Outlook

- a new topological TPC pat-rec has been developed combining clustering and combinatorical Kalman filter methods
- first results show improvements compared to existing LEPTracking pat-rec code

To Do

- code cleanup and documentation
- proper track fitting (propagation through inner material)
- track collections with quality cuts
- study effects of background
 - pair-bg and gamma-gamma
- combine with Si-Tracking
 - pick up hits for TPC segments
 - merge track segments from independent Si-Tracking