Electronic workshop for Si-W ECAL

16–17 May 2011

Ki-Hyeon Park Pohang Accelerator Laboratory

The Pohang Light Source View

Digital Controller Design for the Magnet Power Supply

- Intput Filter
- Output Filter
- Control Loop
- Simulink Simulation
- DSP & ADC board
- -5A High Stable Power Supply

DC Regulator Voltage:	24 [V]
DC Output Current :	±5 [A] at bipolar mode
Output Voltage:	6 [V]
FET Switching Frequency:	25 KHz
► FET:	4 ea (IRF540)
► ADC:	AD977A from Analog Devices
Digital Signal Processor:	TMS320F2808 Texas Instrument
Current Stability:	< 5 ppm

Block Diagram

The rectified input voltage has harmonic components, thus it should be attenuated. The parallel damped filter was preferred to build the MPS

The condition of the $C_1 = 4C_2$ was chosen, because its transfer function was slightly under-damped

The cutoff frequency of the input filter should be ranged ~10Hz,

$$\frac{V_{out}}{V_{in}} = \frac{1 + sC_1R_1}{s^3L_3C_2C_1R_1 + s^2L_3R_1(C_2 + C_1) + sC_1R_1 + 1}$$

The pole of the first filter located about \sim KHz while the switching frequency is above \sim 10 KHz. If pole located to lower, the overall system response became worse, thus it is not good for the system dynamic responses. The second pole is placed after half of the switching frequency

$$\frac{I_{out}}{V_{in}} = \frac{1 + sC_2R_2}{a_4s^4 + a_3s^3 + a_2s^2 + a_1s \times a_0}$$

Where

$$\begin{aligned} a_4 &= L_1 L_4 R_1 C_2 C_3 \\ a_3 &= L_1 L_4 C_2 + L_4 R_1 R_2 C_2 C_3 + L_1 L_4 C_3 \\ a_2 &= C_2 L_4 R_2 + C_2 L_4 R_1 + L_4 C_3 R_1 + C_2 R_1 R_2 \\ a_1 &= R_1 \end{aligned}$$

A conventional PI controller is
$$Gc(s) = \frac{Kps + Ki}{s}$$

The closed-loop transfer function of the power supply is given by:

$$H(s) = \frac{I_{out}(s)}{I_{ref}(s)} = \frac{G_{c}(s)G_{in}(s)H_{I}(s)}{1 + G_{c}(s)G_{in}(s)H_{I}(s)}$$

The equivalent transfer function of the inner loop :

$$G_{in}(s) \equiv G_P(s)G_V(s)/(1+G_P(s)G_V(s))$$

Open-Loop Frequency Response

The crossover frequency is about 5KHz with small phase margin.

2011-05-16

Simulink Model

ADC Board (1)

FPGA-Xilinx Spartan3

ADC Board (2)

ADC board specifications

- 16 bit ADC AD977A : 4 channel
- Input Range : $\pm 5V$, $\pm 10V$, 5V, 10V
- Using the Isolated DC Power
- AD977 Linearity : ±2.0 LSB
- FPGA(Xilinx Sprtan3) : Generate control signals for ADCs
- ADC Data transmitted whenever DSP required
- DAC chip DAC714 (16-bit 200KHz) for ADC Debugging

DSP(CPU) Board

Step Function Response

Step Response of the MPS (0 to 5A, 40ms scale)

Short Term Stability and Zero Cross

Time Axis [24 hours / every 5 second]

Link voltage variation

Current difference between set and read value

1. Fully Digital Control

- 2. Stability : Less than 5ppm
- 3. Output Current : up to 1000A
- 4. Unipolar and Bipolar Power Supply
- 5. Ethernet (+EPICS), CAN and RS232C
- 6. Interlock
- 7. Easy access : Key and Display
- 8. Configuration : programmable
- 9. Easy maintenance

LLRF for PLS-II

Contents

- 1. Introduce the general concept for the control system
- 2. Cavity Modeling
- 3. Signal processing
- 4. CORDIC algorithm
- 5. IQ demodulator
- 6. PI controller
- 7. Digital Filters
- 8. IQ output
- 9. Local Oscillator
- 10. Digital Hardware system

LLRF looks very similar to many other applications, e.g. diagnostics (bunch-by-bunch feedback, position monitoring, …)

for feedback systems: ultimate error is dominated by the measurement process (systematic error, accuracy, linearity, repeatability, stability, resolution, noise)

: By Thomas Schilcher

Cavity Parameters	Unit	Value		
Cavity frequency	MHz	499.66		
Half cavity bandwidth	KHz	4.34		
Number of SC cavity	ea	2+1		
LLRF loop gain	dB	?		
Phase stability	Degree	±1		
Amplitude stability	%	±1		
RF frequency error in steady state	Hz	±10?		

Signal Processing

RF System Architecture (Simplified)

By : Stefan Simrock

System Block Diagram

I/Q demodulation

RF Down Conversion

$$y_{RF}(t) = A_{RF} \cdot \sin(\omega_{RF}t + \varphi_{RF}) \xrightarrow{f_{RF}} y_{IF}(t) = y_{RF}(t) \cdot y_{LO}(t)$$

$$y_{LO}(t) = A_{LO} \cdot \cos(\omega_{LO}t + \varphi_{LO})$$

$$\Rightarrow y_{IF}(t) = \frac{1}{2}A_{LO}A_{RF} \cdot \left(\frac{\sin[(\omega_{RF} - \omega_{LO})t + (\varphi_{RF} - \varphi_{LO})]}{\sin[(\omega_{RF} + \omega_{LO})t + (\varphi_{RF} + \varphi_{LO})]} \right) \quad \text{lower sideband}$$

$$= \frac{1}{2}A_{LO}A_{RF} \cdot \left(\frac{\sin[(\omega_{RF} - \omega_{LO})t + (\varphi_{RF} - \varphi_{LO})]}{\cos(\omega_{LO}t + (\varphi_{RF} - \varphi_{LO})]} \right) \quad \text{lower sideband}$$

After low pass filter

 $y_{IF}(t) = A_{IF} \sin(\omega_{IF}t + \varphi_{IF}) \qquad : \text{RF properties are conserved}$ $\omega_{IF} = \omega_{RF} - \omega_{LO} \qquad (\text{Amplitude ,Phase})$ $A_{IF} = \frac{1}{2} A_{LO} A_{RF}$ $\varphi_{IF} = \varphi_{RF} - \varphi_{LO}$

IQ methods

1. Analog IQ detection

3. Direct amplitude and phase detection

2. Digital IQ sampling / non-IQ sampling

IQ sampling

PID Controller Design

◆ System bandwidth : ~100KHz

- Cavity bandwidth : 4.5KHz

♦ Gain margin : > 6 dB
♦ Phase margin : > 45°

Cavity Modeling

Model of a cavity with beam coupled to a klystron by couplers and transmission lines.

The transfer function H(s) defined as

LLRF Model

$$K_I = \omega_{1/2}$$
 of 4.4 KHz

T is 1.5 µs with the second order Pade approximation of the time delay $K_P = 15$

$$G(s) = K_P \bullet g \bullet \left(1 + \frac{Ki}{s}\right) \bullet \frac{\omega_{1/2}}{s + \omega_{1/2}} \bullet \frac{\omega_{bpf}}{s + \omega_{bpf}} \bullet e^{-Ts}$$

$$\cong K_P \bullet g \bullet \left(1 + \frac{Ki}{s}\right) \bullet \frac{\omega_{1/2}}{s + \omega_{1/2}} \bullet e^{-Ts} \quad \text{when} \quad \omega_b << \omega_{bpf}$$
where $\omega_{1/2}$ half-bandwidth, ω_{bpf} output band-pass filter 5 MHz and 1MHz
 k_p proportional gain, k_i integral gain
 g lumped gain (analog + others)
 T total loop delay
Closed-loop transfer function with unit gain is :

$$GB(s) = \frac{G(s)}{1+G(s)} = \frac{gK_p\omega_{1/2}(s+k_i)e^{-Ts}}{s(s+\omega_{1/2}) + gK_p\omega_{1/2}(s+k_i)e^{-Ts}}$$

First order Pade approximation

$$P_d(s) = \frac{1 - Ts/2}{1 + Ts/2}$$

Second order Pade approximation

$$P_d(s) = \frac{1 - Ts/2 + (Ts)^2/12}{1 + Ts/2 + (Ts)^2/12}$$

Frequency Responses

Bode Diagram Gm = 3.78 dB (at 1.06e+006 rad/sec), Pm = 52.4 deg (at 7.44e+005 rad/sec)

The close loop response showed that the phase margin was about 52° and gain 3.8 dB.

Expected Latency

10⁰

10¹

10²

f [Hz]

10³

10⁴

10⁵

The gain bandwidth product is limited to about 1MHz due to the low-pass characteristics of the cavity, the bandwidth limitations of electronics and Klystrons and cable delay.

- 1. 16-bit ADC 40MHz
- 2. IQ de-multiplex : I & Q output 20 MHz
- 3. CIC filter with decimation : 2 MHz
- 4. PI : Amplitude and Phase regulation
- 5. Vector out (Mux out : 50MHz)

Rotation Matrix

$$\begin{pmatrix} I_{out} \\ Q_{out} \end{pmatrix} = A \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} I_{in} \\ Q_{in} \end{pmatrix}$$

Output to the Klystron

Direct Digital Synthesizer

Vector Output (1)

In FPGA

Vector Output (2)

Generating Local Frequency (DDS)

Using the FPGA Xilinx Spartan-6

- External Reference or Internal Source
- Output Frequency : programmable

CORDIC calculates phase difference between cavity and forward power
 ~10 iterations to get the resolution better than 0.001°.
 if 16 iterations for 1/80MHz is 200ns

- Frequency regulation loop
 - Range : ± 200 KHz
 - Resolution : 2 Hz
 - Bandwidth : < 5Hz

- Don't consider the piezo actuator
 - Range : $\pm 500 \text{ Hz}$
 - Resolution : 1Hz
 - Bandwidth : ~1000 Hz
 - Voltage : ~100V

Module of accelerating SC

ILC-DR, KEK December 19, 2007 T. Furuya

Important components: frequency tuner

Motor tuner (coarse tuning)

• range of 400 kHz

Piezo tuner (fine tuning)

- tuning range of 6 kHz
- response of 20 Hz

Digital Hardware

1) Virtex-6 and LTC2205
 2) VHS-ADC Lyrtech (CANADA)

Virtex-6 FPGA Feature Summary

Table 1: Virtex-6 FPGA Feature Summary by Device

Device Logic Cells	Lania	Configurable Logic Blocks (CLBs)	DED40E4	Block RAM Blocks				Interface	Ethernet	Maximum Transceivers		Total	Max	
	Cells	Slices(1)	Max Distributed RAM (Kb)	Slices ⁽²⁾	18 Kb ⁽³⁾	36 Kb	Max (Kb)	MMCMs ⁽⁴⁾	Blocks for PCI Express	MACs ⁽⁵⁾	GTX	GTH	VO Banks(6)	User I/O(/)
XC6VLX75T	74,496	11,640	1,045	288	312	156	5,616	6	1	4	12	0	9	360
XC6VLX130T	128,000	20,000	1,740	480	528	264	9,504	10	2	4	20	0	15	600
XC6VLX195T	199,680	31,200	3,040	640	688	344	12,384	10	2	4	20	0	15	600
XC6VLX240T	241,152	37,680	3,650	768	832	416	14,976	12	2	4	24	0	18	720
XC6VLX365T	364,032	56,880	4,130	576	832	416	14,976	12	2	4	24	0	18	720
XC6VLX550T	549,888	85,920	6,200	864	1,264	632	22,752	18	2	4	36	0	30	1200
XC6VLX760	758,784	118,560	8,280	864	1,440	720	25,920	18	0	0	0	0	30	1200
XC6VSX475T	476,160	74,400	7,640	2,016	2,128	1,064	38,304	18	2	4	36	0	21	840
XC6VHX250T	251,904	39,360	3,040	576	1,008	504	18,144	12	4	4	48	0	8	320
XC6VHX255T	253,440	39,600	3,050	576	1,032	516	18,576	12	2	2	24	24	12	480
XC6VHX380T	382,464	59,760	4,570	864	1,536	768	27,648	18	4	4	48	24	18	720
XC6VHX565T	566,784	88,560	6,370	864	1,824	912	32,832	18	4	4	48	24	18	720

Issue is DSP Slices

LTC2205/LTC2204

16-Bit, 65Msps/40Msps ADCs

FEATURES

- Sample Rate: 65Msps/40Msps
- 79dB SNR and 100dB SFDR (2.25V_{P-P} Range)
- SFDR >92dB at 140MHz (1.5V_{P-P} Input Range)
- PGA Front End (2.25Vp.p or 1.5Vp.p Input Range)
- 700MHz Full Power Bandwidth S/H
- Optional Internal Dither
- Optional Data Output Randomizer
- Single 3.3V Supply
- Power Dissipation: 610mW/480mW
- Optional Clock Duty Cycle Stabilizer
- Out-of-Range Indicator
- Pin Compatible Family 105Msps: LTC2207 (16-Bit), LTC2207-14 (14-Bit) 80Msps: LTC2206 (16-Bit), LTC2206-14 (14-Bit)

40Msps: LTC2204 (16-Bit)

48-Pin (7mm × 7mm) QFN Package

PIN CONFIGURATION

VHS-ADC Lyrtech (CANADA)

- · AC coupled with programmable gain
- 0.4 MHz to 200 MHz analog input bandwidth (–3 dB)
- –18 dBm to 4 dBm full-scale input
- 75.78 dBc SFDR at 70 MHz F_{in} (bandwidth = 50 MHz)
- Interchannel crosstalk insulation: –87 dB at 70 MHz F_{In} (minimum to maxmum gain)

DAC module Add-on module for VHS-DACs and VHS-ADCs

The DAC module is a high-speed, multichannel digital-to-analog conversion add-on module for VHS-DACs and VHS-DACs. The module is equipped with eight phase-synchronous DACs operating at a maximum refresh rate of 480 MSPS using on-chip interpolation. The

AT A GLANCE

- Eight, 14-bit, 480 MSPS, digital-toanalog conversion channels
- Outstanding clock synchronization

this information, refer to the <u>VHS-DAC</u> and the <u>VHS-ADC</u>.

DAC channels are identical to those of VHS-DACs and VHS-ADCs, and offered with the

same analog coupling output options. When installed on VHS-DACs or VHS-ADCs, all the

same clock reference. To better understand

channels are tightly phase synchronized to the

Hardware options

The DAC module has the following optional hardware packages:

- AC-coupled I/Os—features AC-coupled D/A channel output analog paths
- DC-coupled I/Os—features DC-coupled D/A channel output analog paths

Summary

- 1. Introduce the general concept for the control system
- 2. Cavity Modeling
- 3. Signal processing
- 4. CORDIC algorithm
- 5. IQ demodulator
- 6. PI controller
- 7. Digital Filters
- 8. IQ output
- 9. Local Oscillator
- 10. Digital Hardware system

Thanks for your attention

Any questions?