

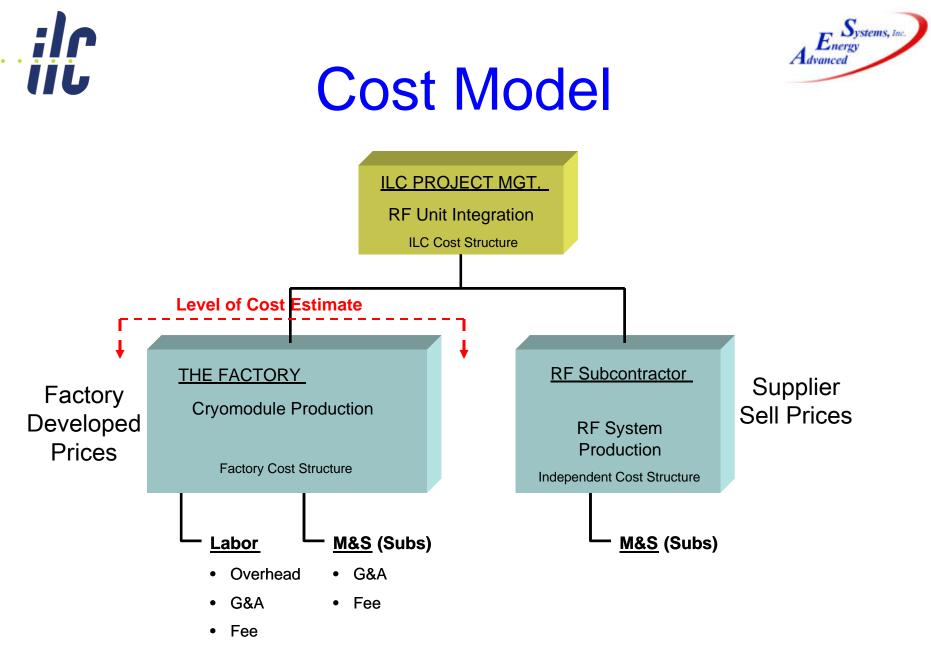
ILC SCRF Dressed Cavity An Industrial Cost Estimate Update

J. Sredniawski Advanced Energy Systems, Inc. July 24, 2011

July 2011

Advanced Energy Systems, Inc.

JJS 1



Background

- Previous work (under contracts from FNAL)
 - Sredniawski (AES), Bonnema (Meyer Tool) & Treado (CPI), "<u>ILC RF</u> <u>Unit Industrial Cost Study, Methodology & Results</u>", PAC 07.
 - A. Favale, J. Sredniawski, M. Calderaro, E. Peterson (AES), "<u>ILC</u> <u>Cavity Fabrication Optimization for High Production</u>", EPAC 08.
 - J. Sredniawski, D. Holmes, T. Schulthiess (AES), "Lowering the Cost of the ILC SRF Cavity Helium Vessel", PAC 09.
- Current effort is an update of only a small portion of the original material (AES internal effort)
 - Focused on "dressed cavity" component (wo tuner)
 - Used original cost model with CY2009 US pricing
 - Updated baseline resource data as available

Manufacturing Approach

- Problem
 - No US company is known to have the interest in setting up high production for a limited term project like ILC, without the goal of future long term business
- A government-owned or leased facility ("The Factory") should be created to provide the equipment and space for superconducting cavity fabrication, processing, and integration and checkout of the cryomodules
 - Ideally located at or nearby a national Laboratory
 - The cost of the setup of <u>The Factory</u> was not part of this study
 - Industry will conduct the work at The Factory, so they will also operate it (overhead & G&A costs included)

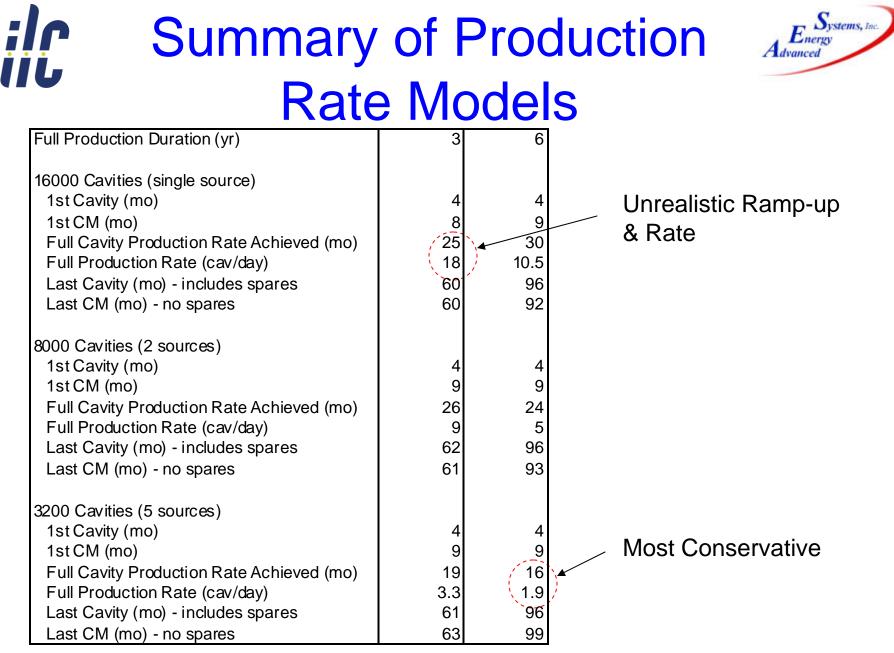
July 2011

Role of "The Factory"

- Industrial contractor operates "The Factory"
- The Factory has two (2) divisions
 - Division A (Cavity Fabrication):
 - Subcontracts all component machining and forming
 - Integrates (machining, welding, cleaning), processes (EP, bake, HPR) and qualifies cavities through VTA level testing
 - Division B (Integration & Assembly):
 - Subcontracts component fabrications (vacuum vessels, shields, tuners, etc.) to numerous suppliers
 - Dresses cavities with helium vessels & tuners, etc.
 - Performs string assemblies
 - Integrates and assembles cryomodules (QC testing only)
 - Delivers CM's to National Lab for cold testing prior to shipment to ILC

Energy Advanced

Applied Labor Rates


Labor rates taken from US Bureau of Labor Statistics for CY2009 (top 10%) Weighted averages for three categories used in calculations

MANAGEMENT Production Manager Industrial Engineer	-	100% 75% 25%	\$63.56 \$50.67 \$12.89	•	Weigh	nted Avg
MANUFACTURING		23 % 100% 56%	\$12.89 \$27.90 \$15.41	<	Weigh	nted Avg
Machinist & Shop Tectnician NC Programmer Chemical Technician	\$34.40	12% 12%	\$13.41 \$4.13 \$3.78			
Welder MFG. SUPPORT		20% 100%	\$4.59 \$30.76	←	Weigh	nted Avg
Parts Inspection Quality Engineering Technician (CMM)	•	25% 25%	\$6.37 \$9.44		-	
Mfg. Planning & Tracking Methods	\$30.89	10%	\$3.09 \$4.22		OH : G&A:	120% 15%
Production Control	•	10% 30%	\$4.22 \$7.64		Fee:	10%

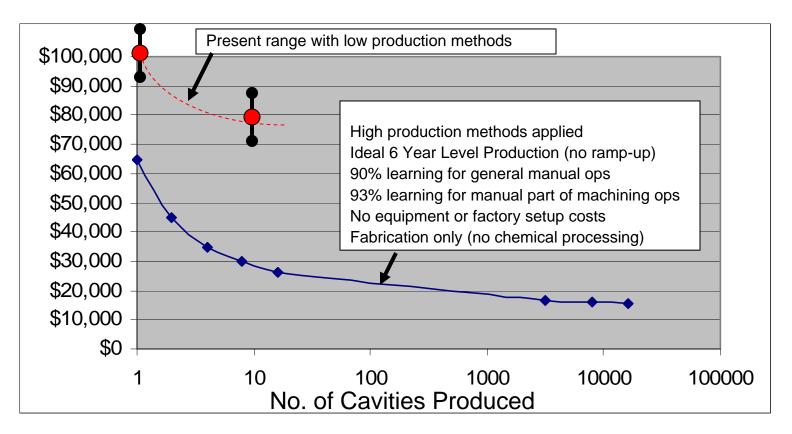
Dystems, In

Energy

Advance

CAVITY FABRICATION

Includes RF Tuning


July 2011

Advanced Energy Systems, Inc.

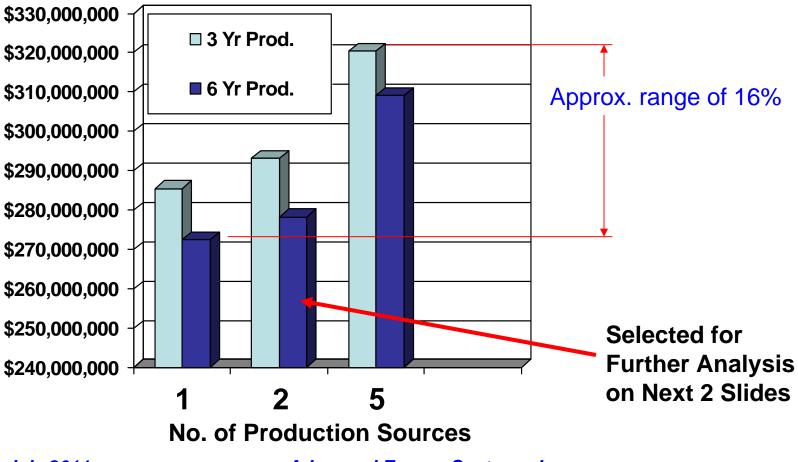
JJS 8

IC Fabrication Price/Cavity

AES Ideal Production Model - CY2009 US \$ - No staff training

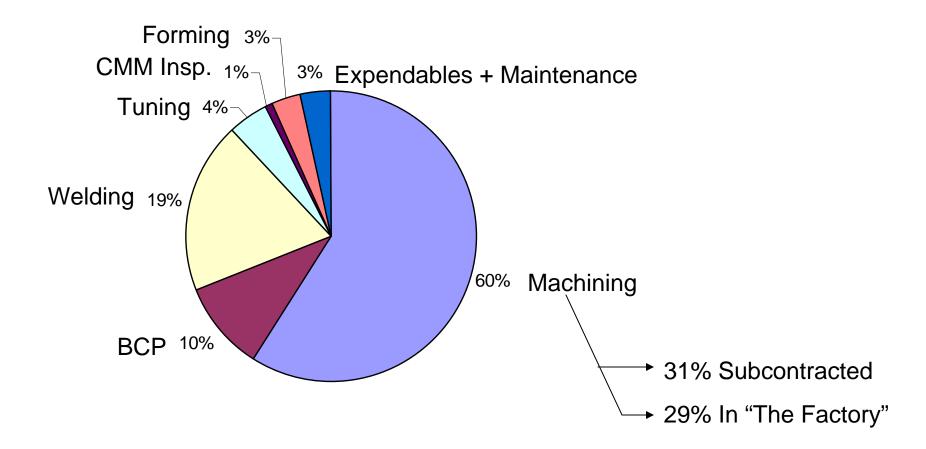
\$\$ difference between 3200 and 16000 cavities is only 4.6%

July 2011

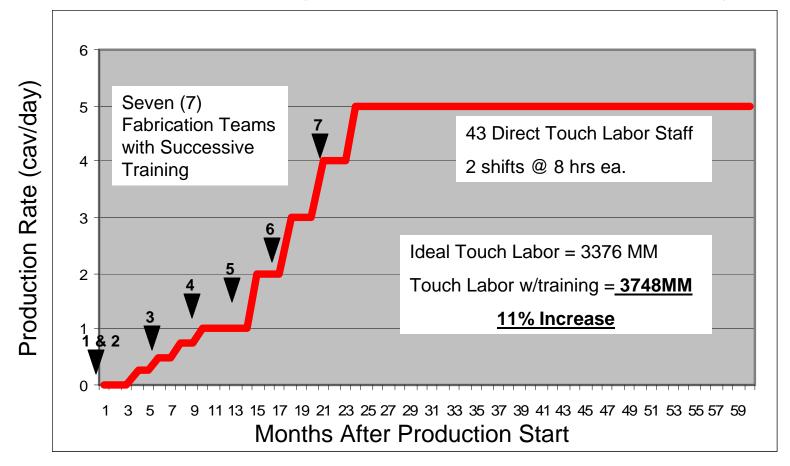

Advanced Energy Systems, Inc.

Energy Advanced

Total Price Comparison



16000 cavities – US \$ CY2009 Includes rough est. of equipment for "The Factory"


Advanced Energy Systems, Inc.

Energy Advanced **IC Production Rate Ramp-up**

8000 Cavities with 6 year flat top – peak rate of 5 cavities/day

Training of teams increases overall labor cost about 11% above ideal model

Min. Required Equipment Advanced For "The Factory"

8000 Cavities with 6 year flat top - peak rate of 5 cavities/day

Type of Equipment	Quantity
CNC Machining Centers (turning/milling)	8
BCP Wet Bench Systems	2
E-Beam Welders (blend in sizes)	10
RF Tuning System	1
Coordinate Measurement System	1
Equipment operates 14hrs/day	

Cavity Fabrication Staff* for "The Factory"

8000 Cavities with 6 year flat top – peak rate of 5 cavities/day

- Touch Labor (43 persons)
 - Machinists/Mech. Technicians (26)
 - Chemical Technicians (5)
 - E-Beam Welders (9)
 - RF Tuning Technicians (3)
- Support Labor (17 persons)
 - Parts Inspection (5)
 - CMM Operators (3)
 - Planning & Tracking (1)
 - Methods (2)
 - Production Control (4)
- Management (4)
 - Production Managers (2)
 - Industrial Engineers (2)

*<u>NOTE</u>: Factory facility operations infrastructure staff is not listed. The cost of this staff is included in the burdens for "The Factory" price roll-up

NOMINAL CAVITY PRODUCTION PRICE

\$18,000 per unit (w/training)

Excludes:

- The Factory equipment
- Niobium Material (next slide)

Niobium Material Cost

- AES actual recent experience (CY2010) shows a nominal material cost of \$37K per cavity
- Adding burdens from "The Factory" the price becomes \$46.8K
 - If the material is provided by the government the burden may be discounted

CAVITY PROCESSING

Excluding VTA

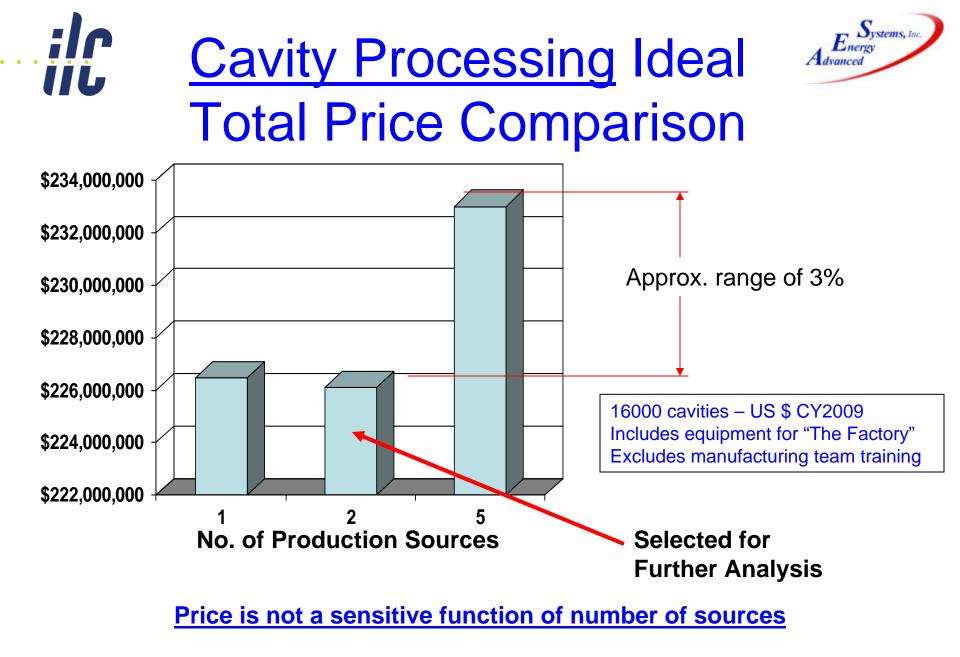
July 2011

Advanced Energy Systems, Inc.

JJS 16

Cavity Processing Steps

Accept cavity from fabrication, perform visual inspection and scribe and measure 36 thickness regions	Inspection Room			1				
Attach tooling for handling & perform ultrasonic dip plus 3 rinses (15 min. each)	Cleaning Room	Accept cavity from RF Lab, install in EP cabinet, attach plumbing, test for leaks, etch (86 min.), drain acid, rinse w/DI water, transfer cavity to HPR	Chem Room					
Accept cavity from fabrication, install in EP stand, attach plumbing, test for leaks, EP on auto (360 min.), drain acid, rinse w/DI water. Disconnect plumbing, remove cavity from stand, transfer cavity to drying area	Chem Room	Prep cavity for cleanroom (3 hr), install cavity in HPR cabinet, conduct 1st automated rinse cycle (4 hr), drain cavity, dry cavity (hot N2 purge) in-situ for 30 minutes, remove cavity, transfer to Class 10 clean room	Class 100 Clean Room	ar		ned components y for 30 micron I	(.nen	
Set up in dryer, blow dry with warm dry air (30min.), transfer cavity to vacuum furnace area	Chem Room	Install 5 blank-off flanges	Class 10 Clean Room					
Accept cavity from EP, perform visua inspection and measure 36 thickness regions		Install cavity in HPR cabinet, conduct 8 hour automated rinse cycle, drain &	Class 10 Clean	With an estimated yield of 80% 10% from the <u>VTA testing</u> 20% of the cavities must be recycled. 10%				
Attach tooling for handling & perform ultrasonic dip plus 3 rinses (15 min. each)	Cleaning Room	dry (30 min) in-situ, remove cavity, transfer to Class 10 clean area	Room	are assumed to go back to t last EP step and 10% only g back to the 2nd HPR. This be allowed up to 3 times per cavity before total rejection.		sumed to go back to the		
Install cavity in furnace, evacuate furnace, increase temp 5C/min, bake @ 800C for 5 hr, cooldown & remove		Attach vacuum valve & close up of cavity, transfer cavity to vacuum lab	Clean Room			his can		
Cavity Mechanical inspection and RF tuning	Room	Attach to clean vacuum pump, pumpdown & leak check, transfer	Vacuum Lab			•	•	
to return structure to achieve field flattness, frequency and mechanical alignment, transfer cavity to EP process	RF Lab	cavity to bake system Attach cavity to clean vacuum pump & start pumping, wrap cavity in heater	Vacuum Lab		<u> </u>	80%	19%	
luly 2011		Advanced Energy Syste	ms Inc			He Vess Velding	el	


IC Processing Price/Cavity

AES Ideal Production Model - CY2009 US \$ - No staff training Includes Cavity re-cycling

Price is dominated by fixed effort processing tasks Add 11% for price with staff training

8000 Cavities with 6 year flat top - peak rate of 5 cavities/day

Type of Equipment	Quantity
EP Systems	4
Vacuum Furnaces	4
Drying Stations	1
HPR Systems	7
Low Temp Bake Stations	9
RF Tuning Stations	1
Vacuum Leak Check Stations	2

- Touch Labor (37 persons)
 - Chemical EP Technicians (8)
 - RF Tuning Technicians (2)
 - Vacuum & Mechanical Technicians (27)
- Support Labor (15 persons)
 - QC/QA (8)
 - Planning & tracking (1)
 - Methods (2)
 - Production Control (4)
- Management (4)
 - Process Managers (2)
 - Chemical Engineers (2)

NOMINAL CAVITY PROCESSING PRODUCTION PRICE

\$13,900 per unit (w/training + expendables + re-cycling)

Excludes:

- The Factory equipment

*NOTE: Factory facility operations infrastructure staff not listed. Cost of this staff is included in burdens for price roll-up

CAVITY QUALIFICATION

Vertical Testing

July 2011

Advanced Energy Systems, Inc.

JJS 22

VTA Process Steps

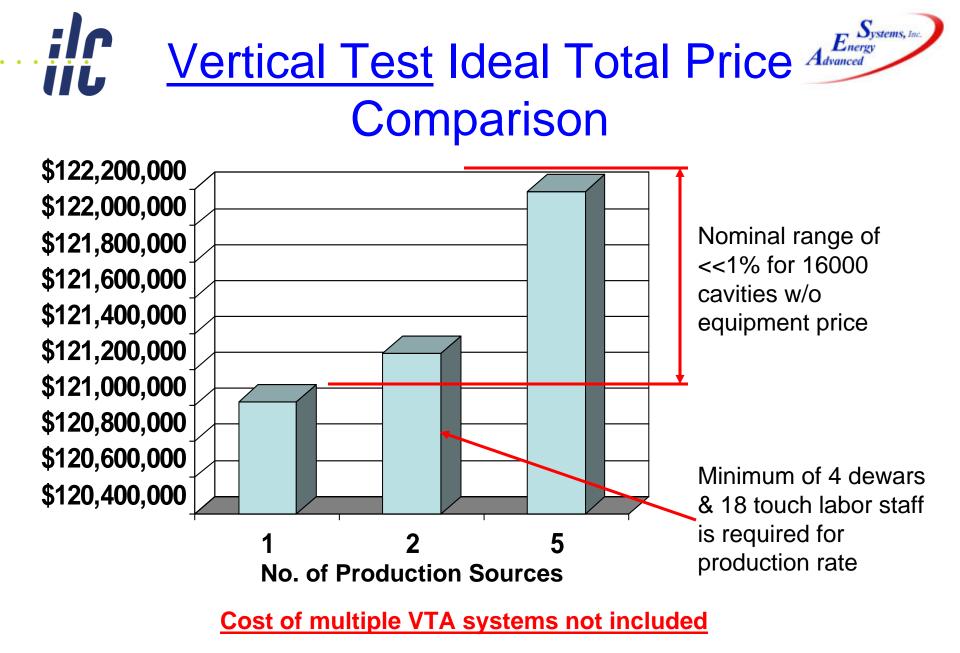
		9	transfer the test stand to the pit		
	CAVITY PROCESSING Detailed Cost Steps		attach coupler motor cabling, Lhe transfer hose, Attach He gas pump- out line, Connect heater, Connect thermometers, Level stick, Ion pump,	22	turn off heater, Disconnect coupler motor, Level stick, Thermometers, Lhe transfer hose, Pump-out line, RF cables, Directional coupler, Ion pump, And ion gauge
		10 11	And ion gauge; Verify operation	23	unfasten top plate from the dewar
STEP		11	fasten top plate to dewar pump-out air, Back-fill with room-	0.4	remove insert from the dewar and place on stand
	Tool-prep (clean gaskets, CF blank		temperature He gas, Monitor vacuum	24	move stand to dedicated warm-up
	off flanges, Formed bellows,	12	level for signs of leak		area with fans blowing, Connect ion
4	Fasteners, Wrenches, Gown, Gloves,	13	Fill LN2 shield	25	pump, And remove the stinger
I	Etc.) Move test stand to portable clean		Start automatic logging of	26	warm up to room temperature
2	room	14	temperatures		
3	Settling time	15	allow dewar jacket to equilibrate interlock checkouts, RF cable	27	after warm, Vent slowly with N2
4	Gowning up And wipe-down vent vacuum line with N2 and seal all-	16	connections, Directional couplers, And RF calibrations	28	Close all-metal valve, Disconnect RF cables, Thermometers, And heater
5	metal valve to vacuum line with formed bellows leak-check vacuum line, Vent with	17	turn on pumps, Begin Lhe transfer and fill to cover cavity		wipe down the insert and test stand and trasnfer to the poertable
6	N2, Fasten adjustable coupling arms, And open all-metal valve	18	resonance search and RF field level calibration	29 30	cleanroom settling time, Gown-up
7	pump-down slowly, And switch on ion	19	pump down to 24 Torr, Measuring Q and E at different T		disconnect the formed bellows, Blank-
	assemble RF-in cable, Pt cable,	20	measure Q vs E at 2K	31	off ends, Remove coupling arms, And transfer cavity out of cleanroom
8	Thermometers, Level stick, Stinger, Bath heater	21	pressurize dewar with room- temperature He gas, Vent to atmosphere, And turn on heater	32	pump out vacuum line

July 2011

iii

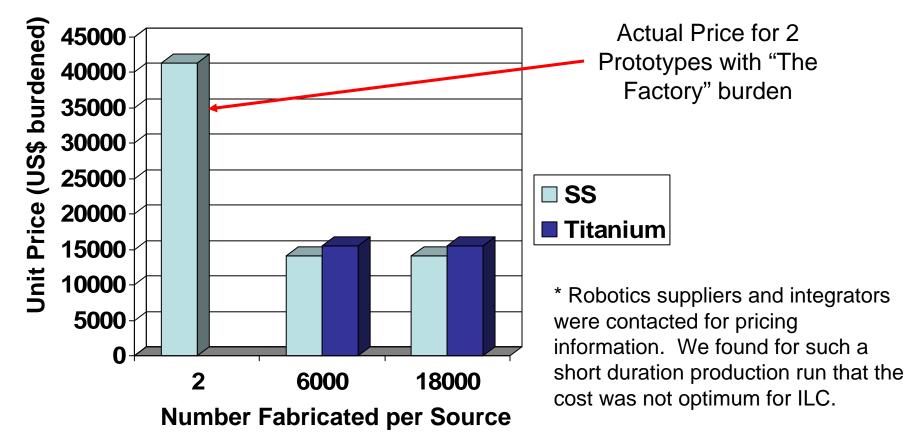
Energy Systems, Inc.


Advanced


VTA Price/Cavity

AES Ideal Production Model - CY2009 US \$ - No staff training Includes Cavity re-cycling

Price is dominated by fixed effort processing tasks Add 11% for price with staff training



Helium Vessel Fabrication

July 2011

Actual & Estimated Price of Advanced Helium Vessels

Current estimates from an industrial fabricator without the use of automated robotics*

Summary of Unit Prices

Task/Item Description	Price (US\$)
Niobium Material (market variable / gov. supplied)	37,000
Cavity Fabrication	18,000
Cavity Processing	13,900
Vertical Test (80% yield with 3 cycles)	6,600
Helium Vessel Fabrication (Titanium)	15,100
He Vessel/Cavity Assembly & Leak Test (taken from previous work)	800
TOTAL PER ASSEMBLED UNIT	91,400 <u>+</u> 10%

İİİ

Where Do We Go From Here?

- Develop a Qualified Set of High-Production Contract Machining Companies for Niobium and Niobium/Titanium Detailed Parts
 - Not trivial because it is not their main business
- Develop an Estimate for the Cost of Designing and Fabricating the Special Tooling Needed for Fabrication
 - Tooling costs were not included in any AES study to date
- Develop a Plan and Estimated Cost for "The Factory" Setup
 - Bring in consultants from automotive and aerospace industries
- What about the cryomodules??
 - Not updated from original study