DR Magnets & Power Supply System

ILC DR Technical Baseline Review Frascati, July 8, 2011

> Mark Palmer Cornell University

DTC Magnet Counts

DTC Magnet Summary (single ring) from D. Rubin

Element	Length[m]	Strength	Number
Arc Dipoles	3	2.28 kG	150
Circumference changing chicane dipoles	1	2.68 kG	28
Other dipoles	2	< 2.28 kG	4
Arc Quadrupoles	0.6	< 0.6 m ⁻²	450
Quadrupoles in dispersion suppressor and straights	0.3	< 0.55 m ⁻²	211
Sextupoles	0.3	< 4.34 m ⁻³	600
Wigglers	1.92	54	54

ILC Damping Rings Technical Baseline Review - Frascati

Estimated Physical Magnet Count

- Comparison with RDR
- Apply certain assumptions
 - 2 sextupoles on either side of single quad can ultimately be replaced by a single magnet
 - Adjacent quadrupoles combined into single magnets

milar
1
ounts

ILC Damping Rings Technical Baseline Review - Frascati

Magnet Comments

- Normal conducting magnets
 - Quadrupoles

IIL

- RDR had high and low current quadrupoles
 - 551 low current (V1) quads (74%)
 - 196 high current (V2,3,4) quads (26%)
- DTC quadrupoles can be matched to same physical families
 - 583 high current (V2,3,4) quads (89%)
 - 74 low current (V1) quads (11%)
- High/Low Cost Ratio (magnets-only): ~1.5

– Dipoles:

- Rough scaling is that expect DTC 3m arc dipole to be comparable in cost to the RDR 6m dipole
- Additional dipole styles
- Net cost increase
- Sextupoles: Need to be re-scaled (~5x K2 ratio), more expensive
 - Correctors: Assume roughly same distribution and cost

 On net, expect NC magnet cost to increase July 8, 2011
 ILC Damping Rings Technical Baseline Review - Frascati

- Wigglers: DTC parameters are (intentionally) closely matched to the ILC "Optimized" Wiggler design.
- Optimized wiggler expected to cost ~75% of the design costed for the RDR

 \Rightarrow Wiggler cost ratio per ring:

ILC Optimized Wiggler

- 12 poles
- Period = 32 cm
- Length = 1.68 m
- $B_{y,peak} = 1.95 T$
- Gap = 86 mm
- Width = 238 mm
- -1 = 141 A

Preliminary Estimate **ILC Damping Rings Technical Baseline Review - Frascati**

Power Supply System

- RDR used bulk supplies for dipoles and discrete supplies to individually power all other ring magnets
- Post-RDR estimates made for a *distributed power supply system* for individually controlled magnets
- DTC system assumed to utilize the distributed power supply system
- Assume 4 bulk dipole power supplies for DTC arcs
 - Versus 6 in RDR
 - Add 1 bulk supply for chicane
 - Additional supplies for specialty dipoles
- Pulsed element supplies unchanged from DCO4 configuration

July 8, 2011

ILC Damping Rings Technical Baseline Review - Frascati

Distributed Power Supply Concept

4 bulk supplies

IIL

- 2 in each major alcove
- Feed 8 buses (4 per ring)
- Individual DC-to-DC converters for each magnet
 - Water-cooled racks distributed around the ring
 - Magnets
 - Quadrupoles
 - Sextupoles
 - Correctors (dipole, skew quad, other)
- Distribute AC to local wiggler power supplies
- Reduce heat load around tunnel due to cable losses to air to <50W/m
- Main dipoles powered in 6 strings per ring
 - 6 dipole supplies per alcove
- Injection/Extraction lines
 - Same as for RDR

Damping Rings EDR KOM, Cockcroft Institute

Sampling of Specifications

- Air heat load
 - Solid conductor magnets (~100kW/ring)
 - Short cables between DC-to-DC converters and:
 - Bus
 - Magnets

⇔ ~40W/m

	Bulk Power Supplies (4 units)				
	Output Power	120 kW			
tor	Output Voltage	50 VDC (voltage regulated)			
	Output Current	2400 A			
)	Input	480 VAC, 3 phase			
	DC Bus				
to-DC	Min/Max Voltage	40V/50V			
nd:	Max Resistance	17 mOhm			
	Min Cross Section	5372 mm ² Al			
	DC-to-DC Converter Cabling				
	Max distance to magnet	7m			
	Max distance to bus	5m			
	Magnets				
	Max Operating Voltage	30 V			
Damping	Rings EDR KOM, Cockcro	t Institute 8			

- Cable costs greatly reduced!
- 35% cost savings relative to RDR
- Controls-related hardware now dominant cost
 - Some obvious further work to reduce costs in this area

Damping

PS Locations

July 8, 2011

ILC Damping Rings Technical Baseline Review - Frascati

Dipole Bulk

Very Rough DC PS System Estimate

- Assume similar bulk/dipole PS specifications (needs validation)
- Assume similar bus specifications (typical magnet) spec has changed so this needs validation)

Cost Estimate	RDR (2006 M\$)	DTC (2006 M\$)	% Change
Power Supplies	5.2	4.1	78%
Cables and Raceways	33.3	9.2	28%
PS Controllers, PLCs, Transductors	12.0	14.5	121%
Quench Protection	0.5	0.2	44%
Racks	1.0	4.4	424%
Total per Ring	52.0	32.4	62%

reliminary Estimate NOTE: RDR ring cost would have been \$34M

Julv 8. 201²

amping Rings Technical Baseline **Review - Frascati**

Supporting Slides

 Extra slides describing the "ILC optimized wiggler" concept follow

IIL

Optimized CESR-c Wiggler Design Mark Palmer, Jeremy Urban, Gerry Dugan Cornell Laboratory for Accelerator-Based Sciences and Education

NSF

- Baseline Wiggler Configuration
 - Basic Requirements
 - Comments on RDR Costing Exercise
- Work Towards a Final Design
 - Superferric Wiggler Physics Optimization
 - Poles
 - Period
 - Gap
 - Width
 - Peak Field

Engineering Issues and Optimization

- Expected Cost Impact
- Conclusion

IIL

Basic Requirements

– Large Aperture

- Physical Acceptance for injected e+ beam
- Improved thresholds for collective effects
 - Electron cloud
 - Resistive wall coupled bunch instability

– Dynamic Aperture

- Field quality
- Wiggler nonlinearities

IL

Wiggler Comparison

	TESLA	CESR-c	Modified CESR-c
Period	400 mm	400 mm	400 mm
B _{y,peak} Gap Width	1.67 T	2.1 T	1.67 T
	25 mm	76 mm	76 mm
	60 mm	238 mm	238 mm
Poles	14	8	14
Length	7	4	7
	2.5 m	1.3 m	2.5 m

ILCDR07 - Frascati

Wiggler Comparison

ILCDR07 - Frascati

March 5, 2007

ÌÌĹ

17

Dynamic Aperture

March 5, 2007

ΪĻ

18

Configuration/Costing for the RDR

- Design/Costing Reference
 - Modified CESR-c Wiggler
 - 14-pole
 - 2.5 m
- Costing Basis
 - Based on detailed information from CESR-c wiggler production run

Documented M&S Costs

- Adjusted for additional poles
- · Adjusted for increased cold mass and cryostat length
- Inflated for intervening years

Production Techniques

- Fabrication and production line manpower requirements analyzed on a stepby-step basis
- Adjusted for modified design
- FTE requirements then re-calculated

– ED&I estimates

- Design work and documentation assume Magnet Group standard rates for complex devices (2 units, one for cryostat and one for cold mass)
- Inspection requirements based on CESR-c wiggler quality control procedures

ILCDR07 - Frascati

Looking Towards a Final Design

- Physics Optimization
 - No. Poles
 - Period
 - Width
 - Gap

- Peak Field
- Engineering Issues
 - Increased Length vs CESR-c design
 - Cryostat Vacuum Chamber Interface
 - Areas for engineering savings
 - Bath cooling ⇒ Indirect cooling
 - Cold gas cooling of intermediate temperature shields
 - No LN₂ in ILC tunnel
 - More efficient coil winding system for large scale production

ILCDR07 - Frascati

Magnet Modeling (J. Urban)

- OPERA 3-d \rightarrow Radia
- Optimizations:
 - Number of poles
 - Pole width
 - Pole gap
 - Period
 - Peak field

−500 Z (mm) ILCDR07 - Frascati

Optimizations

İİL

Gap can be raised to allow for thicker support plate

Recommendation: Gap \geq 86 mm

Narrower poles produce a smaller DA and require a redesigned support structure and vacuum chamber

> **Recommendation:** Width = 238 mm

> > 24

Optimizations

İİL

Fewer poles require higher fields which raises the emittance, a shorter period can counteract this with minimal DA degradation.

Recommendation:

12 poles and period = 32 cm

ILCDR07 - Frascati

70

60

50

40

30

20

10

-100

/ertical Aperture (mm)

Superferric ILC-Optimized CESR-c Wiggler

– 12 poles

IIL

- Period = 32 cm
- Length = 1.68 m
- B_{y,peak} = 1.95 T
- Gap = 86 mm
- Width = 238 mm
- -I = 141 A
- □ τ_{damp} = 26.4 ms
- □ ε_{x,rad} = 0.56 nm·rad

□ σ_δ = 0.13 %

— Misses nominal target (25 ms)

0

Horizontal Aperture (mm)

-50

100

- Linear - Ideal Nonlinear

 σ_{e+inj}

Full Nonlinear

50

- Cryogenics Modifications
 - Indirect cooling for cold mass
 - Switch to cold He gas for cooling thermal shields
 - 42% of manpower for inner cryostat and stack assembly
 significant cost reduction expected
- Shorter Unit

IIL

- Simplified and more robust yoke assembly
- Significant cost reduction
 - 14 % fewer poles
 - 30% reduction in length
- Larger aperture

Relaxed constraints on warm vacuum chamber interface with cryostat

- Optimized design satisfies core physics requirements
- Expected to offer significant cost savings over RDR design
 - Initial estimates give a cost reduction of order 25%
- Optimized design configuration should significantly simplify final engineering design and provide more flexibility with the vacuum chamber interface
- Wiggler Information:

https://wiki.lepp.cornell.edu/ilc/bin/view/Public/CesrTA/Wigglerl nfo

IIL,