

2011 WHCAL testbeams at SPS H8

Three testbeam periods

- 7 days in June: energies up to 50 GeV
- 7 days in July: energies up to 300 GeV
- 5 days end of this month: energies up to 300 GeV

Erik van der Kraaij - CERN LCD September 15th, 2011

Main purpose: Validation of Geant4 simulation for hadronic showers in tungsten

Scintillator tiles 3x3 cm² (in centre) Read out by SiPM Current HCAL setup has 38 W layers. Including active material this is ~4.8 λ

15th September 2011

Tailcatcher for high energies

- Installation started immediately after the end of June run.
 - Installed and commissioned in 10 days available before July run.
 - Only the LED system for calibration does not function

Steel / scintillator-strip sandwich calorimeter with 16 layers ($\sim 5.5 \lambda$)

Containment and leakage for 250 GeV

Erik van der Kraaij, CERN LCD

20x20 cm² with a hole of 8 cm for vetoing, to be used in the offline analysis.

Two 80x80 cm² scintillators, one before and one after the calorimeter, are also mounted. Unfortunately not efficient at lower part of detector.

• Extended with two 30x30 cm² to scan over full surface for muons.

Iterative procedure in which a useful range is found to be fitted:

Example: run361217 mod #9

Hold scan

- At the PS-T9, we shifted all holdvalues by -8 ticks (see 'old hold')
- With the new scan that shift seems to have been too much (see 'new hold').
- New fit results seem more stable, implemented 'new hold' values for each module.

Setting up a beam in SPS-H8

SPS aims 400 GeV primary beam at a target.

- Both H6 and H8 beam start after this target. These two secondary beams are linked in energy by the wobbling magnet settings.
- Most of the time we ran with wobbling of +180, -180 or -300 GeV.

In the beam line we can produce a **tertiary** beam at lower energy by inserting secondary target:

- 400 mm Cu target for hadron production
- 6 mm Pb target for e+- production.

The "hadron" beam is actually a mixed beam consisting of e+, mu+, pi+, p+

• Can be stripped of the e+ with an absorber of 4 mm, 8 mm or 18 mm thick Pb.

H8 beam line has two Cherenkov chambers for particle ID.

- The information was that they are 100% efficient from 30 mb onwards.
 - This unfortunately turned out to be wrong. We put the pressure slightly above the pion threshold, to be efficient for electrons (no electrons in the pi sample).
 - Some 10%-30% of pi in the e-+ sample.
 - ➤ We had dedicated electron runs in July period.

Chamber A

Material and air along the beam

166.7

41.2

Electrons are very sensitive to material in the beam

10 GeV e⁻ signal from June run, With 80m air and some material in beam

10 GeV e⁻ signal from July run. Material in the beam minimized Vacuum beam pipe installed

🕅 Low energy scan – June run

- Unfortunately we could only get a very broad & low intensity beam in the first days of June run. Scanning the low energies with tertiary beam was extremely slow.
 - With H6 agreed that for the last day of June run we got control of the secondary beam.
- Set so-called wobbling of secondary beam to -20, -30, and -50 GeV
 - At such low energies, -10 or -25 GeV particles can also be found from the primary target.
- With no secondary target the intensity is much higher
 - Full scan with negative polarity was done in 30 hours!
- Total #events taken: ~ 5 Million.

With the secondary beam at -180 GeV we set up tertiary beams at lower energies. Rates again too low:

• Beam rate @ -100 GeV: 300 counts/spill

Unlike first week, there was not the option of setting up wobblings of lower energies.

Tested selecting lower energy particles directly from the secondary beam

• Beam rate @ -100 GeV: 3200 counts/spill

Yet this is not how it is supposed to be done at the H8 beamline

• Theoretically, for these high energies, the optics are not able to select particles with different energies immediately from the focal point on the primary target.

As we would never be able to go through our program with 300 counts/spill, we tried it out →

cic

Check of secondary beam quality: contamination

Tertiary vs secondary beam

Check of secondary beam quality: energy

Two energy points crosschecked between tertiary and secondary beam

- Same energy distribution
- Even though it is unclear where exactly the particles are created, the particles have the correct energy.

AHCAL:

events

π.:	16 energy points in range from 10 to 300 GeV	11.4 M
π^+ :	5 energy points in range from 10 to 50 GeV	2.7 M
e ⁻ :	6 energy points in range from 10 to 40 GeV	1.2 M
μ:	large 80x80 triggers 30x30 triggers, in lower 1/3 of detector area	2.1 M 0.3 M

(see backup slide for all energy points)

• Analysis is ongoing, got delayed because of CDR

T3B: The same events in sync with AHCAL, plus ~4 M standalone events.

- From 27/9 to 12/10 we have a combined CALICE run in SPS-H8
 27/9 to 3/10: W-HCAL
 - 3/10 to 12/10: SDHCAL
- Program for W-HCAL:
 - 1) Positive charge at selected energies 50 GeV $\leq E \leq 300$ GeV
 - 2) Muons with $30 \times 30 \text{ cm}^2$ scintillator in 9 positions.
 - 3) Large samples of events (10⁶) at 50GeV, 60GeV and / or 80GeV to get high statistic Kaon samples (N_K / N_{π} \approx 2-5%)

- Detector performed well.
 - Tailcatcher commissioned and operational. Except for LEDs.
- Beam operation took some time to learn, but went very well once understood, even with unconventional settings for secondary beam.
- 2011 program with scintillator AHCAL almost finished and completed.
- Plan for next year is to test tungsten HCAL with gaseous readout.
 - Due to slow neutrons from W, energy resolution of a W-HCAL with gas readout might not be the same as with scintillators. This needs testing.

Backup

Top view of the end deflection of the beam in the wobbling

Wobbling

E[GeV]	# evts[k]	# evts[k]	# evts[k]
	June	July	total
π^{-}			
-10	212	100	312
-15			202
20	517	242	760
-20	517	243	700
-25	240		240
-30	630		630
-40	200		200
-50	490	1465	1955
-60		403	403
-80		804	804
-100		604	604
-120		604	604
-150		1476	1476
-180		602	602
-200		840	840
250		802	802
-200		072	072
-300		813	813
Total π^{-}			11337

E[GeV]	# evts[k]	# evts[k]	# evts[k]
	June	July	total
π^+			
20	237		232
25	221		221
30	305		305
40	1716		1716
50	261		261
Total π^+			2735
e			
-10			200
-15			220
-20			200
-25			200
-30			200
-40			201
Total e ⁻			1221
μ			
10x10			417
80x80			2110
lower 1/3			299
Total u			2826

Very broad & low intensity beam, we could not get it more focused.

Н

V

dic

2 Cherenkov threshold counters Absorber : 4mm, 8mm, and 18mm Pb (strip of electrons)

Cherenkov A 130m up

Cherenkov B 70m up

- T3B is positioned behind the CALICE W-HCAL
 - Measures time development in hadronic shower

New trigger system enables

- 1. high rate standalone acquisition (10kEv/Spill)
- 2. stable oscilloscope synchronization

Quite some leakage for > 40GeV

 \rightarrow nice for T3B

Fraction of Events in which T3B was Hit. ^{10⁴} All Energies: 10(pink) to 300GeV(dark blue) →T3B took a nice Data Sample

