Status of W-AHCAL data analysis

Ching Bon Lam, on behalf of the CERN CALICE group

• Data taken with W-AHCAL at CERN PS/SPS: September-October 2010 and June-July 2011

E _{beam} GeV	Beam content	Comment		
Sept-Oct 2010				
1-10	$e, \pi, (p)$			
	μ	Used for MIPs, but no temperature dependence extracted		
June 2011				
10-50	π			
July 2011				
10 300	e, π , (K)	TCMT included		
10-300	μ	To be used for MIPs		

• For more details about the test beam itself, see talk by Erik van der Kraaij

Electrons 2010: Data selection

- First level of selection: based on Cherenkov counters (but not 100% efficient)
- At low energies: clean electron sample
- At high energies: some contamination from muons (and maybe pions)

• Apply a box cut: $E_5/E_{tot} > 0.7$ and d < 100 mm where $E_5/E_{tot} =$ energy in first 5 layers/total energy and $d = \frac{\sum_i E_i \cdot \sqrt{(x_i - x_{track})^2 + (y_i - y_{track})^2}}{\sum_i E_i}$, i.e. energy weighted distance of hits from shower axis • Fraction of electrons in 2010: lowers with increasing energy

 Very small statistics at high energies (approximately hundreds of events) ⇒ include only runs up to 8 GeV

Electrons 2010: Fit of energy sum distribution

• Problem: Energy sum distribution non-Gaussian for low energies (*E* < 5 GeV), although the data is apparently clean

Step 20 1 GeV e, run 360583 10⁰ 40⁰

- Idea: maybe this is a statistical effect (number of active cells is small at low energies)
- For each cell, the signal spectrum is exponential (for hits above noise threshold)

• Decided to use Novosibirsk function: Gaussian with asymmetric tails

Electrons 2010: Fit of energy sum distribution

Central limit theorem

The distribution of an average tends to be Gaussian, even when the distribution from which the average is computed is decidedly non-Gaussian.

- At 1 GeV: 40 active cells on average
- With increasing beam energy, more hits → more Gaussian like distribution (tail tends to 0)

Electrons 2010: Fits

Low energies: (E < 5 GeV)

- Clean sample
- No problem with the fit

High energies $(E \ge 5 \text{ GeV})$:

- Fit ok, but some tails at low energies
- Tails not present in Monte Carlo

Electrons 2011: Fits

2011 electron data:

- Long tails at low energies
- Looked at those events in detail (event display, etc), no obvious problem observed
- Maybe these are low energy electrons (electrons loosing their energy already before reaching the calorimeter, by interacting with material in the beam upstream of W-AHCAL)
- For the moment, fit only the peak

2010: *e*⁻ **Resolution**

• **Caveat**: Quote the resolution as σ_E/E , with σ and mean from Novosibirsk fit function (Novosibirsk becomes Gaussian at $E \ge 5$ GeV)

- Data look reasonable
- Disagreement with Monte Carlo for $E \ge 5$ GeV (too good sigma in Monte Carlo, not yet understood)

2010: e^+ Resolution

- Data at 1 GeV not included in the fit (see back-up slides)
- W-AHCAL positron energy resolution: worse than for Fe-AHCAL (arXiv:1003.2662): $\frac{\sigma_E}{E} = \frac{(21.9 \pm 1.4)\%}{\sqrt{E}} \otimes (1.0 \pm 1.0)\% \otimes \frac{58.0 \text{ MeV}}{E}$

 \rightarrow lower sampling ratio relative to X_0 (see back-up slide)

2010 Pions

- Energy distribution shows tail at high energies, reason unclear
- Example for 5 GeV: red line is Gaussian fit

- Studies based on shower shapes (using TMVA) and comparison with Monte Carlo indicate no electron contamination
- Note: energy distributions shown for events with shower start in layer ≤ 5 (using Marina's track finder)

2010 Pions: Data compared to QGSP_BERT with/without HP

• Difference between QGSP_BERT and QGSP_BERT_HP, as expected

Better agreement with data for the latter
 ⇒ use QGSP_BERT_HP from now on

2010 Pions: Data compared to Monte Carlo

- For E = 10 GeV, nice agreement
- For lower energies, not so good anymore
 - \Rightarrow expect input from our data to GEANT4 to improve the situation

2010 Pions: Data compared to Monte Carlo

- MC: QGSP_BERT_HP
- Results by fitting only the peak with a Gaussian (fit range optimised to get good χ^2/ndf)
- MC/data agreement at 3% level

AHCAL: π/e ratio

Fe-AHCAL

 Results from CAN-034 (N. Feege), using Fermilab data

W-AHCAL

- Only 2010 data for the moment
- π/e approximately 0.9

Summary

- Electrons 2010:
 - Novosibirsk fit function, valid for all our runs
 - $\sigma_E/E \simeq 27\%$
 - MC for $E \ge 5$ GeV shows too good sigma
- Electrons 2011: Long tail at low energies (under investigation)
- Pions 2010:
 - Tail at high energies, reason unclear (present also in MC)
 - Obvious differences between QGSP_BERT and QGSP_BERT_HP
 - Surprisingly good agreement between data and MC
- Pions 2011 (not shown): Dominated by leakage, need TCMT information

Next steps

- Determination of MIP constants for both HCAL and TCMT with 2011 data
- Checks of temperature dependence of MIPs and gains
- Try to understand tails in distributions
- **•** • •
- Publish note

Back-up slides

• Gaussian with asymmetric tails:

$$f(x) = A \cdot \exp\left(-0.5 \cdot \frac{\ln^2[1 + \Lambda \cdot tail(x - mean)]}{tail^2} + tail^2\right)$$

with $\Lambda = \frac{\sinh(tail \cdot \sqrt{\ln 4})}{\sigma \cdot tail \cdot \sqrt{\ln 4}}$

May look complicated, but it has only 3 parameters: mean, tail and sigma

Material	λ_I [cm]	X _o [cm]	λ_I/X_0
Fe	16.77	1.76	9.5
W	9.95	0.35	28.4

- Fe-AHCAL: 1.6 cm Fe per layer $\Rightarrow \sim 1 X_0$
- W-AHCAL: 1.0 cm W per layer $\Rightarrow \sim 3 X_0$

List of runs: 2010

Energy	Run number		
	Negative	Positive	
1	360583	360628, 360629	
	360584	360629	
2	360782	360550, 360551	
	360785	360552, 360573	
		360810, 360811	
3	360835	360598, 360599	
	360836	360615, 360616	
4	360774	360536, 360543	
		360570, 360571	
		360801, 360802	
5	360834	360591, 360597	
	360827	360613, 360614	
6	360707	360533, 360534	
	360771	360617, 360618	
	360772	360563, 360564	
		360799, 360800	
7	360825	360589, 360590	
	360826	360611, 360612	
		360644, 360645	
8	360767	360532, 360561	
	360770	360626, 360627	
		360633, 360796	
		360797	
9	360823	360619, 360642	
	360824	360643, 360837	
		360838	

2010: e^- and e^+

Electrons	Positrons	
 Temperature: 20 – 21° C, i.e. similar temperatures for all runs 	 Temperature: 20 - 26° C, i.e. large variations from run to run ⇒ variations in the energy resolution from run to run, probably due to imperfect temperature calibration (temperature slope to be measured) 	
e ⁻ 2010: single runs	e* 2010: single runs	
0.15	0.15	
0.10 0.00 0.00	0.10 0.00 0.00	