Shower separation in AHCAL using track-wise clustering algorithm

Boris Bulanek

Charles University, IPNP

CALICE meeting, Heidelberg

Content

Trackwise clustering (TWC) algorithm

- 2 Data preparation
- Shifting study (6x6 and 12x12 cm tiles shifting into 3x3 cm virtual grid)
- Ganging study (ahcal 6x6 and 12x12 cm tiles influence)
- Results of trackwise clustering, comparision with PandoraPFA results

Goal: finding the "neutral hadron" cluster in vicinity of charged cluster

extension of TWC study of J. Samson (CAN-11)

- extension of particles distance comparision of neutral-charged particle instead of charged-charged MC study
- validation studies (ahcal geometry)
- comparing results with PandoraPFA study of Oleg Markin (CAN-24)

Trackwise clustering

- algorithm for clusters separation
- suited for a Tesla detector concept
- iterative algorithm: having cluster seed and hit(j)
- using them to estimate if potential hit(i) is a cluster hit
- Only the value for cluster hit estimation: $s_{ij} = w \cdot R_{ij} + (1 w) \cdot A_{ij}$ and also separately R_{ij} and A_{ij}

```
possible as a steering parameter: cut
on s_{ij}, R_{ij}, A_{ij}, w
study of J. Samson for ahcal
(2 charged \pi^- events):
R_{ij}: 20 \rightarrow 25 and A_{ij}: 80 \rightarrow 92
```

no track-cluster matching

• used also an extension of *Trackwise algorithm* - *Wolf algorithm*: implemented possibility of merging clusters using charged particle energy and resolution

- selection of proper runs (centered)
- shifting hits of particles
- creation of neutral particle
- creation of double particle events (overlapping events)

0	CERN-2007 π^- runs with beam
	position in centre of $ahcal \rightarrow$
	minimalizing of 6x6 and 12x12 cm tiles
	influence

π^- runs Run Energy [GeV] # events [x103]

- selection of proper runs
- creation of neutral particle, finding the position of particle

neutral particle simulation, finding the position of particle

finding the shower start layer

- creating neutral particle: exclusion of track in ecal and ahcal
- using only events with shower start layer in first 10 layers
- finding the track in ecal
 - determination of particle position (next slides)

- selection of proper runs
- Creation of neutral particle, finding the position of particle
- shifting hits of particles onto virtual infinite 3x3 cm grid

Shifting events onto 3x3 cm virtual infinite grid

 shifting by multiply of 3 cm in x and y direction

shift: $(0,0) \rightarrow 3 \cdot (n,m); n,m \in \mathcal{N}$

- problem of shifting 6x6 (12x12) cm tiles into virtual 3x3 cm tiles
 - \rightarrow random selection of tile vs using all of the tiles (next slides)

- selection of proper runs
- creation of neutral particle, finding the position of particle
- shifting hits of particles onto virtual infinite 3x3 cm grid
- creating double particle events (overlapping events)

overlapping events

- overlapping with first application of 0.5 MIP cut
- overlapping only consequent events from two runs (e.q. no permutation) due to preservation of energy distribution profiles

- selection of proper runs
- creation of neutral particle, finding the position of particle
- Shifting hits of particles onto virtual infinite 3x3 cm grid
- creating double particle events (overlapping events)
- definition of distance

Definition of particles distance

- Position of showering particle: defined as the mean of (x,y) track hits positions in ecal
- Distance of charged and neutral particle: distance of their positions
 - using mean of gaus fit (right)

- selection of proper runs
- creation of neutral particle, finding the position of particle
- shifting hits of particles onto virtual infinite 3x3 cm grid
- creating double particle events (overlapping events)
- definition of distance
- application of track-wise clustering

matching tracks with clusters

 cluster with the most of track hits is the charged one (right: two found clusters)

Shower separation in AHCAL

- selection of proper runs
- Icreation of neutral particle, finding the position of particle
- Shifting hits of particles onto virtual infinite 3x3 cm grid
- Creating double particle events (overlapping events)
- definition of distance
- application of track-wise clustering
- application of Wolf algorithm, energy conversion

conversion MIP \rightarrow GeV

- Wolf algorithm compare an energy of charged particle with reconstructed clusters for merging clusters
- deposited energy of "neutral particles" from gaus fit of deposited energy per run
- energy conversion factor using linear fit (a + b * x)
- b = 34.94 ± 0.07 MIP/GeV
- $a = 1 \pm 1$ MIP

Reconstructed neutral particle energy, definition of "confusion"

- example: charged particle (10 GeV), neutral particle (25 GeV), mean distance 34 cm
- only events with just 2 found clusters

- neutral cluster distribution
- second peak on energy of charged particle

 Definition of confusion: energy of rec. neutral cluster - energy measured in ahcal (from the shower start layer)

Shifting events study (How to shift the 6x6 and 12x12 tiles onto 3x3 cm grid

- Mth-II: all tiles, equally distr. energy
- smallest confusion using Mth-I (used in next studies)

Shifting methods (Mth-III)

Influence of 6x6 cm and 12x12cm ahcal tiles (Ganging study)

Problem

What would be the difference using only 3x3 cm tiles instead of 6x6 and 12x12 cm tiles

Ahcal fine module

- hadronic showers cover also 6x6 and 12x12 cm ahcal tiles (ILD only 3x3 cm)
 - How they influence results of TWC?

- Virtual module Pure Mokka events 1x1 cm tiles \rightarrow 3x3 cm tiles
- using the frame of ahcal
- no digitization both ahcal and ecal

ganging study event by event

 every event in the same condition (shower start, track position) before shifting, overlapping and TWC.

Neutral particle B GeV 15 GeV 15 GeV 15 GeV 100 150 200 250 300 350 distance [mm]

Relative difference between | < confusion > | of ahcal and 3x3 ganging for 10 GeV charged and 25 GeV neutral particle Relative difference between $|<\mbox{confusion}>|$ of ahcal and 3x3 ganging as a function of distance

- $\bullet\,$ relative difference of confusion module in order of $\%_{0}$
- bigger modul of confusion for ahcal as expected

Results of Trackwise Clustering, confusion term

Mean of confusion

RMS90 of confusion

- charged particle 10 GeV, using only first 10 ahcal layers for shower start
- strong dependence of confusion term on energy of neutral particle
- 3 times bigger modul of confusion for 25 GeV neutral particle (not expected knowing lateral shapes)

Results of Trackwise Clustering, efficiency; 20-GeV neutral cluster

Results of Trackwise Clustering, efficiency dependence on shower start layer

• having charged cluster instead of neutral improved efficiency \rightarrow what is an influence of shower start layer definition on efficiency?

Comparision with results of Oleg Markin's PandoraPFA study, mean confusion

- The same initial conditions:
 - using 0.5 MIP cut before overlapping
 - while shifting using random cell assignment

mean confusion, 10 GeV neutral particle

- smaller confusion with higher energy of charged particle (track)
- no significant difference in TWC results while changing the energy of charged particle

Comparision with results of Oleg Markin's PandoraPFA study, rms90 confusion

Summary

Results of generic clustering studies

- Shifting study shows as the best choise using random tile assignment
 already used in PandoraPFA study of Oleg Markin
- Ganging study shows no degradation of clustering results using ahcal geometry

Results of track-wise clustering

- extended study of J. Samson
 - extension of distance range of clusters using shifting procedure data analysis comparision with MC
- comparision of TWA applied on Data and MC shows small differences (mainly small influence of shower shapes differences between Data and MC)

Backup

- Overlapping of neutral and charged particle has to give me collection of hits with energy as sum of collections where they originate from. (left).
- ganging of hcal hits can't affect the energy sum (right-differences of ahcal energy sum with(out) ahcal ganging

```
range of float number \approx 7 digits, # hits 10^3
```

Efficiency of finding two clusters

shower radius

Second Central Moment

Problem of energy or # hits distribution

Energy and Hits distribution

- no bias of ahcal energy deposition in comparision with MC
- more # hits for Data.
 - need for lateral energy and hits distribution for answer on weighted SCM discrepancy (SCM is a function only of distance from the mean position)
- using gaus fit peaks
- shower start in first 10 layers

Energy and Hits radial distribution

Plots:

- energy of ahcal (left), no bias in comparision with MC hits of ahcal (right), more # hits for Data.
 - need for lateral energy and hits distribution for answer on weighted SCM (if e.g. the energy radial distribution has bigger tale and same for hits distr.)
- not mean but gaus peak comparision
- shower start in first 10 layers

radial distribution definition

rings-tiles intersections for energy and #hits radial distribution

- for particular event using only rings fully inside ahcal
- Energy in ring: $E = \sum_i E_i * \text{intersection}(\text{tile}_i, \text{ring})/\text{tile}$
- intersections are computed analyticaly

Energy and Hits radial distribution (example of 15 GeV pion)

ightarrow bias of SCM to higher value for data