Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measurement

Conclusion

KLauS2v0 Characterization Measurements

Markus Dorn, <u>Tobias Harion</u>, Michael Kolpin, Hans-Christian Schultz-Coulon, Wei Shen, Gvidas Sidlauskas

Kirchhoff-Institut für Physik, Universität Heidelberg

15. September 2011

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger

Efficiency Power Catin

SiPM measurements

Conclusion

Content:

- KLauS Version 2.0 Overview
 - Design Features
 - Power Reduction Scheme
 - Channel Description
- Characterization Measurements

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- DAC Linearity
- Dynamic Range
- Trigger Jitter
- Trigger Efficiency
- Power Gating
- SiPM Measurements
- Conclusion

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measurement

Conclusion

KLauS2v0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measurement:

Conclusion

KLauS - Kanäle zur Ladungsauslese von SiPMs

KLauS1v0

KLauS2v0

KLauS is a silicon photomultiplier readout chip specifically designed for calorimetry applications.

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features

Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measurement

Conclusion

Features of KLauS2v0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

KLauS1v0 features	KLauS2v0 features
4 channels	12 channels
Power gating not supported	Power gating supported
10 mW/channel	Decreased power consumption
Dynamic range 150 pC	Increased dynamic range
Signal to noise ration > 10	Signal to noise ration > 10
SiPM bias tunable	SiPM bias tunable
AMS CMOS 0.35 μ m	SiGe 0.35 μm
	Reduced digital noise

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

neasurement

Conclusion

Power Reduction Scheme

Channel diagram of KLauS1v0

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Analog chain: preamplifier +2 shaping stages Power gating not possible

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

measurement

Conclusion

Power Reduction Scheme

Channel diagram of KLauS2v0

Analog chain: passive integration + DC stabilization + active filter Modified current conveyor supports power gating

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measurement:

Conclusion

Characterization Measurements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

measurements

Conclusion

Test Board and Setup

SiPM and charge injection measurements possible

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

measurements

Conclusion

Test Board and Setup

(日)、(四)、(E)、(E)、(E)

SiPM and charge injection measurements possible

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measurement:

Conclusion

Performed Measurements

Input Bias Tuning

Dynamic Range

 \rightarrow DAC Linearity

 \rightarrow Analog Output Linearity

 \rightarrow Trigger Jitter and Charge Noise

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

High Precision Timing

Low Power Consumption

ightarrow Power Gating

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterizatior

DAC Linearity

Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measuremer

Conclusion

Setup:

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ○ 圖 ○

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity

Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measuremen

Conclusion

Linear range of voltage output $> 1.8\,\rm{V}.$ Periodic deviations caused by mismatch in the current mirrors of the DAC

DAC Linearity

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterizati

DAC Linearity

Dynamic Range

Trigger Jitter Trigger Efficiency

SiPM measurement

Conclusion

Funktionsgenerator

Charge signals from 40 $\rm fC$ to $220\,\rm pC$ are generated Measurements with different shaping times and DAC values

Dynamic Range

Computer

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Dorn. Harion. Kolpin. Schultz-Coulon. Shen, Sidlauskas

Trigger

Dynamic Range

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Maximum INL value < 2.1 % for $100 \,\mathrm{ns}$ shaping time.

Dynamic Range

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range

Trigger Jitter

Trigger Efficiency Power Gatin

SiPM

Conclusion

Funktionsgenerator

A signal charge corresponding to 15 fired pixels (660 fC) is injected.

Trigger Jitter

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity

Dynamic Range Trigger Jitter

Trigger Efficiency

Power Gatin

51PM measuremen

Conclusion

Ereignisse 20 20 400 $\sigma = 56,80 \text{ ps}$ 300 200 100 0<u>3.8</u> 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 Verzoegerung [ns]

Trigger Jitter

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter

Trigger Efficiency

Power Gating

measurements

Conclusion

Trigger Efficiency

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Trigger efficiency and charge noise have been determined for trigger thresholds corresponding to 6,7,8 and 9 fired pixels.

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter

Trigger Efficiency

Power Gating

SiPM measuremer

Conclusion

Trigger Efficiency

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter

Trigger Efficiency

Power Gating

SiPM measuremer

Conclusion

Trigger Efficiency

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter

Trigger Efficiency

SiPM

Conclusion

Maximum charge noise : $18\,{\rm fC}$

Trigger Efficiency

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measurements

Conclusion

Power Gating

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Power consumption reduced from $\approx 2.5\,\mathrm{mW/channel}$ to $<25\,\mu\mathrm{W/channel}$

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measurements

Conclusion

Power Gating

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Influence of the power gating on SiPM bias has to be small

Observed bias variation less than $20\,\mathrm{mV}$ over the whole DAC range

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measurements

Conclusion

SiPM Measurements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

haracterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measurements

Conclusion

Recorded Single Photon Spectra

MPPC 25 um pitch at nominal voltage

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measurements

Conclusion

Recorded Single Photon Spectra

MPPC 50 um pitch at nominal voltage

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measurements

Conclusion

Recorded Single Photon Spectra

CPTA SiPM at low overvoltage

イロト 不得 トイヨト イヨト

э.

Dorn, Harion, Kolpin, Schultz-Coulon, Shen, Sidlauskas

Overview

Design Features Power Reduction

Characterization

DAC Linearity Dynamic Range Trigger Jitter Trigger Efficiency Power Gating

SiPM measurement

Conclusion

• KLauS2v0 has been built with additional features

- Characterization measurements were successful
 - Bias DAC linear in a range of 1.8 V
 - Dynamic range of 220 pC under all conditions
 - Trigger jitter < 60 ps for MIP signals
 - Charge noise $< 18 \, \text{fC}$
 - Power consumption $< 2.5 \, \text{mW/channel}$
 - Power gating functional
- Measurements with different SiPM types successful

Outlook:

- Further characterization of the power gating functionality
- Ready for integration into SPIROC.

Conclusion