

Introduction

- The physics at ILC requires excellent calorimetry to utilize the concept of particle flow
- To separate electromagnetic showers and neutral hadron showers from other particles, fine segmentation in the longitudinal and transverse directions in necessary both for the EM and hadron calorimeters
- \bullet At DESY, members of the Calice collaboration are constructing a 1 m³ analog hadron calorimeter prototype, consisting of a 38-layer steel plastic scintillator tile sandwich structure (4.6 λ) that will be tested in hadron beams together with an ECAL and a tail catcher
- The design of the "physics" prototype is based upon the experience gained with a technical prototype (MiniCal) that operated 108 scintillator tiles read out with wavelength-shifting fibers coupled to SiPMs in a positron testbeam at DESY

Physics Prototype Stack

- 38 layer sampling calorimeter
- 2 cm steel absorber plates + 1/2 cm scintillator tiles
 - core 100 tiles: 3×3 cm² (reduce to 25 6×6 cm² in layers 31-38)
 - intermediate rings: 6×6 cm²,
 - outer ring: 12×12 cm²
- WLS fiber + SiPM readout of each cell (total of 7608 cells)

Goals for the Physics Prototype

CALICO Calorimeter for ILC

- Study structure of hadron showers for different energies and incident angles
- Validate simulation with measured showers
- Study separation of 2 adjacent showers needed for jetenergy reconstruction
- € Gain large-scale, long-term experience with calorimeter based on SiPM readout
- Develop calibration strategy
- Identify critical operational issue

Properties of SiPMs

- Multipixel Geiger Mode APD
 - Gain 106
 - Bias U~50 V
 - Active area 1 mm²
 - 1156 pixels, 20μm × 20μm
 - Efficiency 10-15%
 - Insensitive to B field
 - Each pixel has few MΩ quenching resistor
 - Recovery time < 100 ns
- SiPM detectors are autocalibrating
- SiPM response is non linear

SiPM response, ADC count

SiPM Tests at ITEP

(M. Danilov)

● In automatic setup illuminate 15 SiPMs 1 simultaneously with calibrated UV LED light

Operate with U=U_{nominal}+2 V for 48 hours choose operating point at 1 MIP=15 pixels

Measure non-linear response

Select SiPMs wrt gain (>4×10⁵), noise
 (<1.8kHz), cross talk (<1.8kHz), current (<2μA)

Over 5000 SiPMs have been tested

SiPM Radiation Hardness

- Irradiate SiPMs with 200 MeV protons at ITEP synchrotron
- Record current for accumulated dose
- After 0.8 krad irradiation,
 SiPM current increases to 5µA
 → resolve single pixels
- \bullet Yield 5 μ A also for 6×10^{11} /cm² thermal + 2×10^{10} /cm² 1MeV) n
- At ~5 krad, I_{siPM}= 25μA
 → MIP is still measurable
- For ILC operation we expect n flux of <10¹⁰ cm⁻²/500 fb⁻¹ except for endcap inner layer close to beam pipe

(M. Danilov)

Tile Preparation at ITEP

All tiles have been molded and edge treated (matting)

• Mill groove into tiles at ITEP and insert WLS fiber

(M. Danilov)

Insert SiPM on one side and cover other side of WLS fiber with 3M reflector

Measured Light Yield in Tiles

- Selected SiPMs are inserted into the tiles, (via air gap to fiber)
- With 90Sr source the light yield of entire cell (tile + WLS fiber + SiPM) is measured

(M. Danilov)

To ascertain a sufficient dynamic range, we want MIP peak in 10-20 pixel range

<LY>= 16.6 pixels

Spread = 1.9 pixels

G. Eigen. Calor 2006

Module Layout

216 tiles with WLS fiber + SiPM readout mounted in one layer

- Tiles are positioned and fixed in a frame
- The high granularity in the core is suited for a test of the semidigital readout option

Routing of Fibers and Wires

- Measure SiPM positions
- Cover tiles with 3M super reflector
- Mount FR4 board
- Glue flexible pads
- Solder SiPMs & cables to pads
- Route fibers and test them
- Test readout

18 analog channels / chip

ILC_SiPM chip

2 base boards (12 piggy backs) / layer

very front-end electronics

Frontend ILC SiPM Chip

- SiPM bias voltage adjustment (0-5 V)
- Global gain settings and shaping
- Track & hold, multiplexing

Based on ECAL asic

From L.Raux (LAL)

Calibration and Physics Mode Operation

Data Acquisition

€ VME-based DAQ modified from CMS Si tracker RO board, first

adapted for the ECAL

Does very front-end control, digitization and data buffering

Need 5 cards, each having 8×216 channels

>1 kHz inst. rate,100 Hz average rate2000 events buffer

Calibration-Monitoring System Stormeter for 1

- Monitor stability of tile-fiber-SiPM system between MIP calibrations with fixed LED intensities
- Perform gain calibration
- Measure SiPM response function
- Determine intercalibration constants
- Temperature and voltage dependence of SiPM
 - dG/dT ~ -1.7% / K
 - dG/dV ~ 2.5% / 0.1V
- Temperature and voltage dependence of light yield at fixed light intensity
 - dQ/dT ~ -4.5% / K
 - dQ/dV ~ 7% / 0.1V
 - → stability of LED system after PIN diode correction <1%

Calibration-Monitoring System

- Provide UV light to each tile via clear fiber
- Monitor each LED with PIN diode
- Record temperature & voltage with slow control system (4 temperature sensor/module)

Mechanical Support Structure

- Stack support for scintillator and gaseous HCALs built
- Movable table design for CERN and FNAL test beam runs

K.Gadow (DESY)

Software for Test Beam Data Analysis

- Use structured software → essential for distributed effort
- It is developed in close interaction with WWS software group
- Use same tools for testbeam analysis and detector optimization

Status of the Prototype

- Construction of 12 modules is completed
- For 8 modules MIP calibration has been performed with ettest beam at DESY
- 4 modules are being assembled
- Expect to have 16 modules ready for hadron test beam at CERN together with ECAL (20 slabs) prototype starting end of July (3 ~10 day periods in July, August and October)
- ~14 additional modules will be finished for the October run
- Expect entire 38 layers to be completed by the end of 2006 and to be ready for further beam tests in 2007

Conclusion & Outlook

- A high-granularity analog HCAL prototype is under construction that will study hadronic shower topologies
- It will operate ~8000 channels of scintillator tiles with WLS plus SiPM readout, arranged in 38 layers
- The electronics is designed such that a common DAQ serves for both ECAL and HCAL
- W use a calibration and monitoring system based on monitored UV light distributed to each tile via clear fibers
- The scintillator HCAL prototype is soon completed and commissioned for hadron beam tests at CERN and Fermilab

Collaborative Effort of Calice Subgroup

The institutions involved in this work:

DESY, Hamburg U.; Dubna; ITEP, MEPhI, LPI Moscow, Prague, and help from LAL Orsay

