slic A Geant4-based detector simulation package

Jeremy McCormick, Norman Graf, Ron Cassell, Tony Johnson SLAC June 8, 2006

Mission Statement

- Provide full simulation capabilities for Linear Collider physics program:
 - Physics simulations & detector designs.
- Need flexibility for:
 - New detector geometries/technologies.
- The system should be flexible, powerful, yet simple to install and maintain.
- Limited resources demand efficient solutions, focused effort.

Full Detector Response Simulation

- Use Geant4 toolkit to describe interaction of particles with matter.
- Thin layer of LC-specific C++ provides access to:
 - Event Generator input (binary stdhep format)
 - Detector Geometry description (XML)
 - Detector Hits (LCIO)
- Geometries fully described at run-time!
 - In principle, as fully detailed as desired.
 - In practice, will explore detector variations with simplified approximations.

LC Detector Full Simulation

slic: The Executable

- - Build static executable on Linux, Windows, Mac.
 - Commandline or G4 macro control.
 - Only dependence is local detector description file.
 - Trivial Grid usage (no database call-backs, etc.)
- Java GUI developed
 - Cross-platform
 - Auto-update of exe

Why XML?

- Simplicity: Rigid set of rules
- Extensibility: easily add custom features, data types
- Interoperability: OS, languages, applications
- Self-describing data, validate against schema
- Hierarchical structure \leftrightarrow OOP, detector/subdetector
- Open W3 standard, lingua franca for B2B
- Many tools for validating, parsing, translating
- Automatic code-generation for data-binding
- Plain text: easily edited, cvs versioning

LCDD and GDML

•Adopted GDML as base geometry definition, then extended it to incorporate missing detector elements.

LCDD

- detector info
- identifiers
- sensitive detectors
- regions
- physics limits & cuts
- visualization
- magnetic fields

GDML

- expressions (CLHEP)
- materials
- solids
- volume definitions
- geometry hierarchy

LCDD Structure

```
LCDD Root Element
<ld><ld>>
                        Information about the Detector
 <header>
                        Identifier Specifications
 <iddict>"""
 <sensitive detectors> .....
                        Detector Readouts
                        Physics Limits
 Regions (sets of volumes)
 <regions> .....
                        Visualization Attributes
 <display>.....
                        GDML Root Element
 <qdml>
                        Constants, Positions, Rotations
  <define> .....
                        Material Definitions
  <materials>
                        Solid Definitions
  <solids>
                        Volume Hierarchy
  <structure>
 </gdml>
                        Magnetic Field
 <fields>
</ld>
```

Generic Hits Problem Statement

- We wish to define a generic output hit format for full simulations of the response of detector elements to physics events.
- Want to preserve the "true" Monte Carlo track information for later comparisons.
- Want to defer digitization as much as possible to allow various resolutions, etc. to be efficiently studied.

Types of Hits

- "Tracker" Hits
 - Position sensitive.
 - Particle unperturbed by measurement.
 - Save "ideal" hit information.
- "Calorimeter" Hits
 - Energy sensitive.
 - Enormous number of particles in shower precludes saving of each "ideal" hit.
 - Quantization necessary at simulation level.

LCIO

- Persistency framework for LC simulations.
- Currently uses SIO: Simple Input Output
 - on the fly data compression
 - some OO capabilities, e.g. pointers
 - C++ and Java implementation available
- Changes in IO engine designed for.
- Extensible event data model
 - Generic Tracker and Calorimeter Hits.
 - Monte Carlo particle heirarchy.

Detector Variants

- Runtime XML format allows variations in detector geometries to be easily set up and studied:
 - Stainless Steel vs. Tungsten HCal sampling material
 - RPC vs. GEM vs. Scintillator readout
 - Layering (radii, number, composition)
 - Readout segmentation (size, projective vs. nonprojective)
 - Tracking detector technologies & topologies
 - TPC, Silicon microstrip, SIT, SET
 - "Wedding Cake" Nested Tracker vs. Barrel + Cap
 - Field strength
 - Far forward MDI variants (0, 2, 20 mr)

ILC Full Detector Concepts

Geant4 Calorimeter Studies

- Still investing a lot of time understanding Geant4!
- slic is very useful for investigating details of shower simulations.
 - simple setups can be analyzed same as complex.
- Strong EM calorimeter resolution dependence on range cuts for thin active material.
- Energy non-conservation in hadron showers.
 - Bugs found in GEISHA and patches provided for G4 several years ago.
 - n and n treated with different models.

Test Beams

Summary

- Provides a complete and flexible detector simulation package capable of simulating arbitrarily complex detectors with runtime detector description.
- Being used by ILC detector community for simultaneous and iterative evolution of different detector concepts and their variations.
- Could be used by other communities (astro, medical) for rapid prototyping or simulation.

Additional Information

ILC Detector Simulation http://www.lcsim.org

ILC Forum
 http://forum.linearcollider.org

SLIC
 http://www.lcsim.org/software/slic

LCDD http://www.lcsim.org/software/lcdd

Wiki http://confluence.slac.stanford.edu/display/ilc/

LCIO http://lcio.desy.de

GDML
 http://gdml.web.cern.ch/GDML/

JAS3
 http://jas.freehep.org/jas3

WIRED4 http://wired.freehep.org

AIDA http://aida.freehep.org

Backup Slides

GeomConverter

Small Java program for **LCDD** slic Icio converting from compact description to a variety of other formats **GODL** lelaps Icio Compact GeomConverter Description **HEPREP** wired org.lcsim Analysis & Reconstruction 19

Tracker Hit

- MC Track Number
 - Encoded detector ID (detector dependent)
 - Global hit position at entrance to sensitive volume
 - Global hit position at exit of sensitive volume
 - Track momentum at entrance to sensitive volume
 - Energy deposited by track in sensitive volume
 - Time of track's crossing
 - Hit number
 - Local hit position at entrance to sensitive volume
 - Local hit position at exit of sensitive volume
 - Step size used by simulator in sensitive volume

Calorimeter Hit

- - Encoded detector ID (detector dependent)
 - MC ID
 - energy
 - time of deposition
 - for each energy contribution