Uniformity in ATLAS EM Calo measured in test beams

- > Constraints on the EM calorimeter constant term
- > Energy reconstruction
- > Uniformity results with test beams 2000-2002
 - · 3 endcap cap modules
 - · 3 barrel modules

dedicated to deep understanding of the EM calorimeter

Accordion Liquid Argon calorimeter

Lead/Liquid Argon sampling calorimeter with accordion shape :

Test beam Setups

2000-2002: 6 (3 barrel and 3 end-cap) production modules scan in E and η over whole modules 2004: Combined test beam (see Walter's talk), final electronics+ DAQ

End-cap

ATLAS-like electronics

Constant Term in ATLAS EM calo

- with a constant term ~ 0.7%, effect on H $\rightarrow \gamma \gamma$ resolution small: keep constant term as low as possible
- Total Constant term $C = c_{Loc} \oplus c_{LR} < 0.7\%$ for high energy measurement
- c_{Loc} "Local contribution" to constant term < 0.5%
 - variation in $\Delta \eta \times \Delta \phi = 0.2 \times 0.4$ (16 x 8= 128 Middle cells), measured in Test Beam
- c_{LR} Long range variations: corrected with $Z \rightarrow ee$ events
 - 250 electrons in each unit of $\Delta\eta$ × $\Delta\varphi$ = 0.2 × 0.4, 440 such regions in ATLAS
 - $10^5 \text{ Z} \rightarrow \text{ee}$ events (few days @ 1Hz) to achieve $c_{LR} < 0.4\%$

Example of contribution to constant term

Efforts during construction, calorimeter modules as reproducible as possible : few corrections, as small as possible

Absorber thickness

Effect of variation in lead thickness

1% Pb variation \rightarrow 0.6% drop in response Measured dispersion σ = 9 μ m (calo) Translates to < 2 % effect on constant term

Calibration - physics signal difference

η from 0 to 56 in middle cell numbers

$$\eta = [0, 1.4]$$

$$\Phi = 9,...14$$

- · Different injection points for signal and calibration
- · Marco's talk: signal reconstruction has to be well controlled, if the constant term is to be kept below 0.7%
- · Important effect on the final uniformity (~1% effect if not corrected)

Energy reconstruction: EM cluster (I)

$$E_{rec} = a_{E,\eta} + b_{E,\eta} E_{PS}^{Clus} + c_{E,\eta} \sqrt{E_{PS}^{Clus}} \cdot E_{1}^{Clus} + d_{E,\eta} \sum_{i=1,3} E_{i}^{Clus}$$

- Determined on MC, depend on η and on E (see W.Lamp's talk for linearity). Determined at one φ only, applies to all φ
- a: Primary electron energy lost (offset)
- b: material in front of the calorimeter (~1.5 X0)
- c: 0.9 X0 of cables, electronics and support structure

245 GeV e-, scan in η

Matter distribution in test beam MC

Energy reconstruction II

$$E_{final} = (E_{rec} + E_{pec}^{leakage}) \times f_{cell\ lmpact} \times f_{nuclear\ Binding} \times f_{rec}^{leakage}$$

- Leakage (next slide)
- Transverse leakage, accordión effects in ϕ correction for a 3x3 cluster
- Nuclear-Binding: nuclear binding energy compensation,
 0.2% effect @ 245 GeV between electrode A and B
- Tr: Correction for electrode in transition region (see later)
 (no E field)

Longitudinal leakage

Uniformity: correlation of leakage/energy in the back E₃

$$\frac{E_{Leak}}{\langle E_{Leak} \rangle} \stackrel{\text{1.5}}{\underset{\text{0.5}}{\downarrow}} = 1$$

$$\frac{E_{Leak}}{\langle E_{Leak} \rangle} (\eta, E_3) = \alpha + \beta \times E_3$$

Linearity: small leakage contribution, use of the average value only.

$$E_{Leakage}(E_{Calo}) = \langle E_{Leak} \rangle$$

If no leakage parameterization, becomes a dominant effect for uniformity (0.6% contribution)

Deposited energy in Data and MC

Deposited energies = $f(\eta)$ in the PS and in the 3 calorimeter compartments before applying the correction factors a,d,c,d

Excellent Data / Mc agreement in all samplings and in PS

Result in detailed studies of many fine effects in data (Xtalk, M phys/ M cal...)

Transition correction

Problem in E field in transition region between electrodes A and B

In 4 strips, degradation of E resolution by a factor 2

Final energy corrections (barrel)

Universality of corrections which are determined on Data in the barrel, the same for all modules.

Different corrections only between A and B electrodes.

In η very small mechanical deformation of accordion not observable

Uniformity barrel results

Module	P13	P15	M10
Global constant term	0.62%	0.56%	0.65%

Comb TB 2004: 0.55 % over ~30 cells

Understanding of the uniformity

Energy scale P13/P15 ~ 5 10-4! P13 0.34% rms P15 0.34 % P13/P15 0.24%

Uniformity over 300 cells < 0.5 %

From ATLAS physics TDR

Source	Contribution to uniformity
Mechanics: Pb + Ar gap	< 0.25 %
Calibration: amplitude + stability	< 0.25 %
Signal Reconstruction + inductance	< 0.3 %
Φ modulation + longitudinal leakage	< 0.25 %
Over η < 0.8 region (181 cells)	
Correlated non-uniformity P13/P15	0.29 %
Uncorrelated non-uniformity: 0.17	% (P15) and 0.17 % (P13)

Endcap uniformity

Scan @ 120 GeV on 3 out of 16 modules, in H6 beam line

Endcap modulation corrections

Impact point correction within the cell to be parameterized versus ϕ and $\eta.$ Modulation in ϕ depend on $\eta,$ well reproduced.

No need to parameterize corrections versus in η in the barrel, only for $\eta <$ and > 0.8

Endcap uniformity results

 $\eta = 1.5$ to 2.4

	Outer wheel			Inner wheel
Module	ECC0	ECC1	ECC5	ECC5
σ/E	1.27%	1.28%	1.22%	1.26%
Constant term	0.70%	0.72%	0.61%	0.78%

Conclusion

- > Uniformity tested in 6 production modules of the ATLAS EM calorimeter in dedicated and combined test beams
- > Unique occasion to study the calorimeter in great detail and to precisely tune the MC
- > Performances well within expectations :
 - 0.44 % global uniformity over one module
 - Energy scale between modules known at 10^{-3} level

Nuclear-Binding: nuclear binding energy compensation, 0.2% variation between electrode A and B, due to $\lambda 0/X0$ difference

Nuclear binding energy in calorimeter

 η index