

CMS ECAL Calibration Strategy

Georgios Daskalakis
On behalf of the CMS Collaboration
ECAL group

CALOR 2006 – Chicago, USA June 5-9, 2006

What is Calibration?

To profit from the intrinsic ECAL performance (measured in TestBeam) we have to:

equalize crystals response (inter-calibration)

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{2.9\%}{\sqrt{E}}\right)^2 + \left(\frac{125(MeV)}{E}\right)^2 + (0.30\%)^2$$

constant term increased by calib. errors

Raw channel-to-channel response variation:

Barrel: variation of scintillation light $r.m.s. \sim 13\%$

Endcaps: VPT signal yield $r.m.s. \sim 25\%$

What is calibration?

algorithmic corrections

(particle type, momentum, position & clustering algo)

Account for energy losses due to containment variations or electron radiation in the Tracker material

G, F, c factors should/must be determined by the Calibration procedure, aiming for the most accurate energy measurement for electrons & photons.

Calibration Roadmap

Before Data taking:

Crystals in TestBeam

Lab measurements

see R. Paramatti talk

Cosmics

see G. Franzoni talk

During Data taking (in-situ):

Min-bias / Level-1 jet triggers

 $Z \rightarrow e^+e^-$

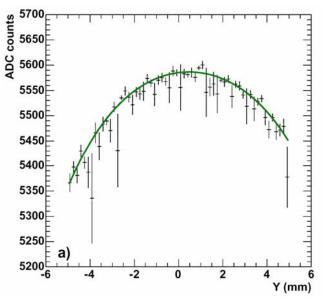
Isolated electrons (W→ev)

 $\pi^0, \eta \rightarrow \gamma \gamma$, $Z \rightarrow \mu \mu \gamma$

Crystals response must be <u>stable</u> in time. Complications:

• Radiation exposure changes crystals transparency (formation of color centers and subs. annealing). Crystal transparency is measured every 20 min by injecting laser pulses.

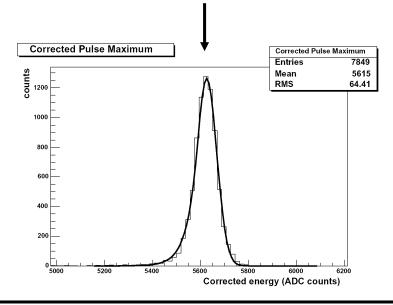
see A. Bornheim talk


• Temperature variations affect APDs and crystals. *Cooling system:*

keeps temperature stable in time ($\Delta T \sim 0.05^{0}C$) and uniform within Supermodule ($\Delta T \sim 0.2~^{0}C$)

Before Data taking: Crystals in TestBeam

5650 5550 5500 5450 5400 5350 5300 5250 5200 Y (mm)

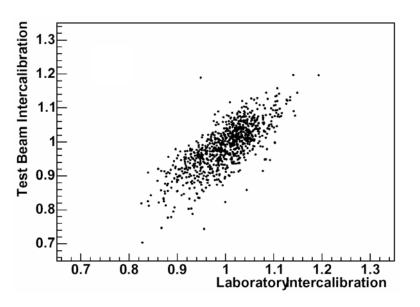

Electron beam and trigger have a lateral spread similar to the lateral size of the crystal.

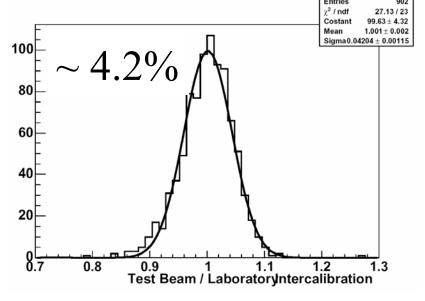
Correct the reconstructed energy dependence on the impact position of the electron.

Relative Calibration factor: $\alpha_i =$

$$\alpha_{i} = \frac{Mean_{i}}{Mean_{ref}}$$

Corrections in both lateral dimensions

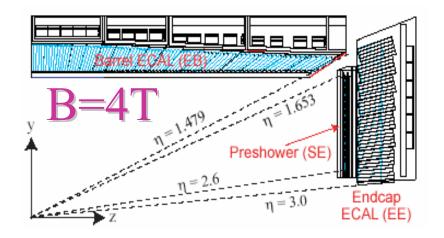



No time for all ECAL supermodules

Before Data taking: Crystals in the LAB

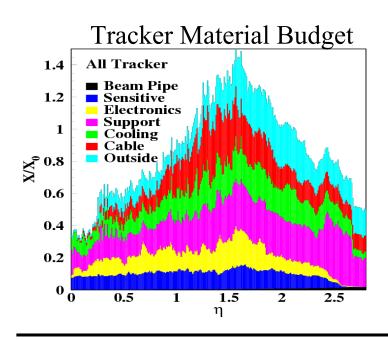
Regional centers: CERN, INFN-ENEA Casaccia

Radioactive source : 60 Co with γ at 1.2 MeV


Comparison with TestBeam: 4.2% inter-calibration precision.

Details in R. Paramatti talk

Detector Details

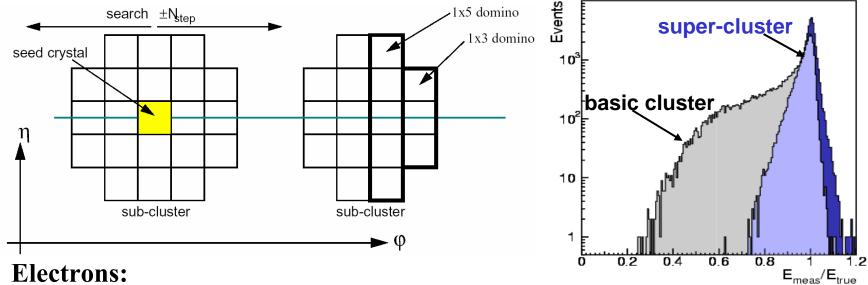


Tracker material:

electrons loose energy via Bremsstrahlung photons convert

4T solenoidal B field:

Electrons bend \Rightarrow radiated energy spread in φ


impact on the energy resolution for electrons and photons.

In-situ calibration of ECAL will be a challenge!

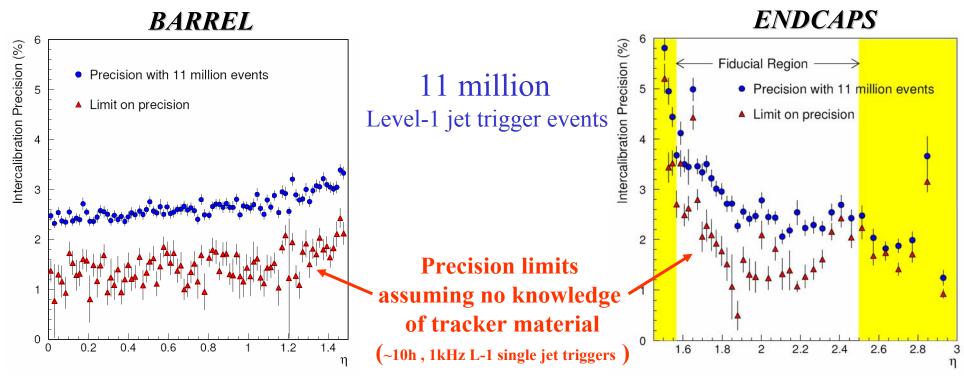
Energy Reconstruction

4T B field : Electrons bend \Rightarrow radiated energy reaching ECAL is spread in φ . The spread energy is clustered by building a cluster of clusters, a supercluster. In the Endcaps, add also the energy deposited in the $\sim 3X_0$ thick Preshower.

Photons:

Energy contained in a fixed array of crystals (5x5)

Algorithmic Energy Corrections for e & γ :


Different sources of variation in the clustered energy need to be corrected.

Tuning algorithmic corrections is necessary in the complete calibration process.

In-situ: φ-uniformity method

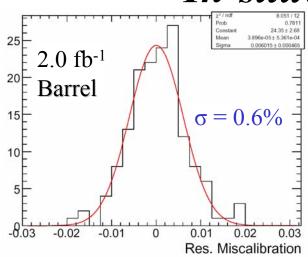
Idea: ϕ -uniformity of deposited energy in crystals at constant η

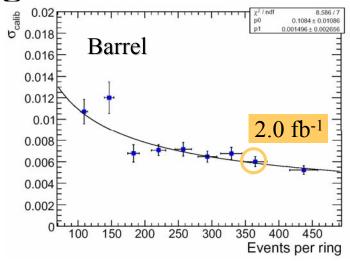
 $\emph{Limitations}$: non-uniformities in ϕ

- in-homogeneity of tracker material
- geometrical asymmetries

Used: Min-bias / Level-1 jet trigger events

Method: Compare $\langle E_T \rangle_{CRYSTAL}$ with $\langle E_T \rangle_{RING}$.


Inter-calibration of η rings:


 $Z\rightarrow e^+e^-,\,Z\rightarrow \mu^+\mu^-\gamma$, isolated electrons

In-situ: using $Z \rightarrow e^+e^-$

Method:

Z mass constraint

Use cases:

- Inter-calibrate crystals in ECAL regions
- Inter-calibrate ECAL regions (i.e.rings in φ-symmetry method)
- Set the absolute energy scale
- Tune algorithmic corrections for electron reconstruction

Events Selection: Low brem electrons.

Algorithm:

Iterative (~ 10 -15), constants are obtained from the peak of ε^i distribution.

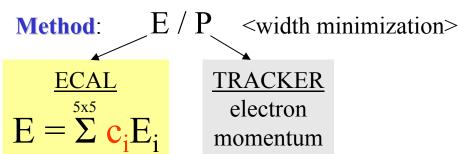
$$\bar{\epsilon}^i = \frac{1}{2} \cdot \left[\left(\frac{M_{inv}^i}{M_Z} \right)^2 - 1 \right]$$

Results:

Assuming 5% mis-calibration between the rings and 2% mis-calibration between the crystals within a ring

Statistics: 2.0 fb⁻¹

0.6% ring inter-calibration precision



In-situ: using isolated electrons

Target: 0.5% calibration precession

Sources: W
$$\rightarrow$$
ev (10Hz HLT @ 2x10³³cm⁻²s⁻¹),
Z \rightarrow e⁺e⁻ (2Hz HLT @ 2x10³³cm⁻²s⁻¹),
J/ Ψ \rightarrow e⁺e⁻, b/c \rightarrow e, ...

Event Selection:

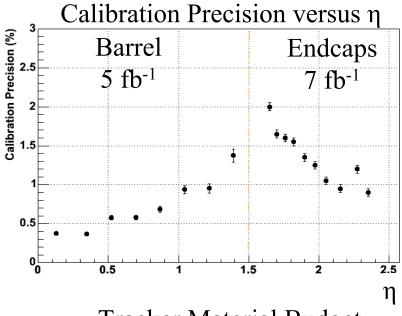
We need a narrow E/P \Rightarrow Low brem e[±] Variables related to electron bremsstrahlung : ECAL (S_{3x3}/S_{5x5}) TRACKER (track valid hits, $\chi^2/n.d.f.$, P_{out}/P_{in}) Efficiency after HLT: 20-40% Barrel ,

Background: S/B \sim 8 (isol. electrons from W/QCD) Part of it might be useful (b/c \rightarrow e).

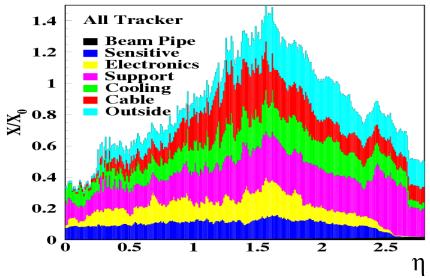
Calibration Constants extraction Techniques:

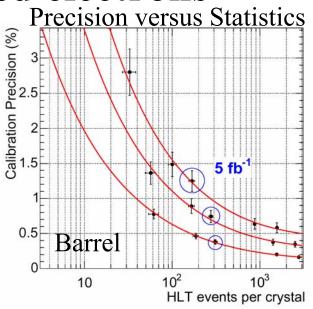
- L3/LEP iterative (~20 iterations),
- matrix inversion

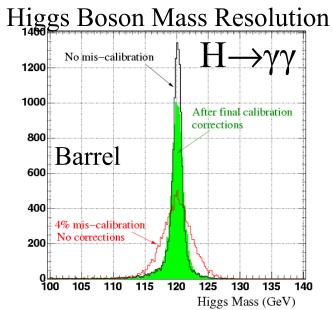
10-30% Endcaps


Calibration Steps

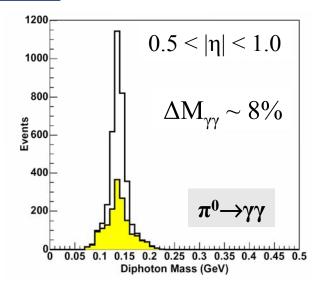
- Calibrate crystals in small η-φ regions
- Calibrate regions between themselves using tighter electron selection, $Z \rightarrow e^+e^-$, $Z \rightarrow \mu^+\mu^-\gamma$




In-situ: using isolated electrons



Tracker Material Budget



In-situ: $\pi^0 \rightarrow \gamma \gamma$, $\eta \rightarrow \gamma \gamma$

Method:

Mass constraint for crystal inter-calibration.

Unconverted photons are in-sensitive of the tracker material

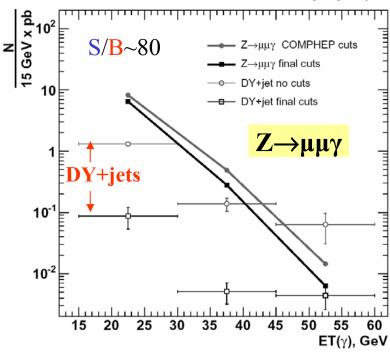
 $\pi^0 \rightarrow \gamma \gamma$:

Selection: shower shape cuts per γ , small γ opening angles (60-90mm)

"Common" π^0 s; can be found in L1 e/m triggers (source: jets or pileup events)

Efficiency $\sim 1.4\%$ Level-1 rate : 25kHz $\}$ ~ 2 days \Rightarrow 1K ev./crystal \longrightarrow $\sim 0.5\%$ stat. inter-calibr. precision

 $\eta \rightarrow \gamma \gamma$:


Much lower rate after background suppression Better mass resolution ~ 3%

... they seem promising ... still under study ...

In situ: $Z\rightarrow \mu\mu\gamma$

- Inter-calibrate ECAL regions
- Set absolute energy scale
- Tune algorithmic cluster corrections

Significant rate; Little Background;

For $1 \text{fb}^{-1} \Rightarrow 1 \text{ } \gamma \text{ / crystal } \Rightarrow \text{calibrate}$ 10-crystal wide rings with 0.1% stat. precision.

... still under study ...

Conclusions

We have to inter-calibrate 75848 ECAL crystal.

Target: 0.5% inter-calibration accuracy through out ECAL.

Before DATA taking:

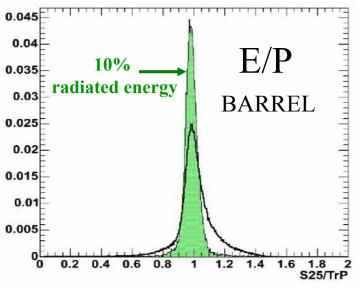
- TestBeam (not all SuperModules)
- Laboratory Measurements (⁶⁰Co , all crystals) : ~4.0%
- Cosmic muons : ~3%

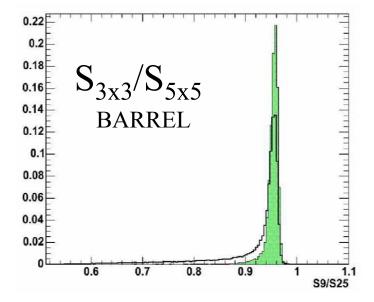
In-situ:

- φ-symmetry (jets/min-bias events): 2-3% in couple of hours
- Isolated electrons (W \rightarrow ev, Z \rightarrow e⁺e⁻,...) : ~ 0.6% with 10 fb⁻¹
- $\pi^0, \eta \rightarrow \gamma \gamma$: very promising but still under study

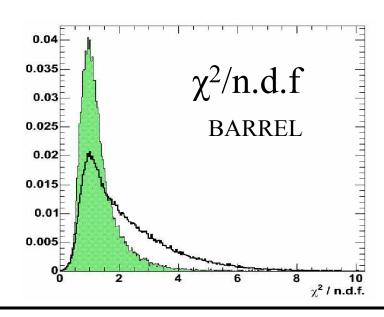
Calibration Strategy aims to:

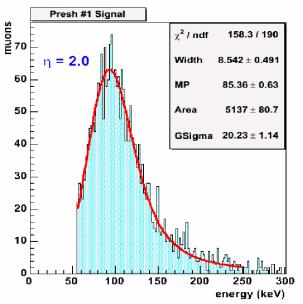
achieve the most accurate energy measurement for electrons & photons that will lead us to fast and clean discoveries.

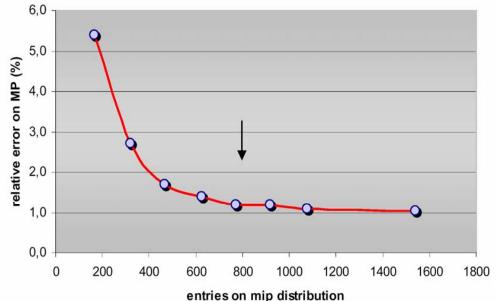



BACKUP




In-situ: using isolated electrons





In situ: Preshower

Response variation:

- sensor thickness (1% r.m.s.)
- gain uniformity (5% r.m.s.)

Dynamic range: 1-400 MIPS equivalent

Absolute MIP scale:

Use 1 MIP @ High Gain \Rightarrow suitable S/N Cosmic μ (4GeV) \Rightarrow Absolute MIP scale \sim 10 h

Sensor-to-sensor inter-calibration

- *In-situ* μ^{\pm}, π^{\pm} (jets/pile-up) \Rightarrow 1% in 1 week
- Use ICC (front-end) to inter-calibrate High/Low Gains
- ICC calibration in **few hours** (between LHC fills)