Jet Reconstruction and Calibration in the ATLAS Calorimeters

On behalf of ATLAS collaboration

Sigrid Jorgensen IFAE CALOR06

From partons to signals

Various effects play a role in the chain:

Partons → Calorimeter signals

• Physics:

- Parton shower & fragmentation
- Underlying events
- Initial State Radiation & Final State Radiation
- Pileup form minimum bias events

Detector:

- Non compensation
- Dead material
- Electronic noise
- Energy leakage

Clustering:

Out of "cone" energy losses

Strategy: disentangle as much as possible physics and detector effects

Atlas Calorimeters

- Calorimeter non-compensation e/h ~1.3 − 1.5 (depend on calorimeter)
- Extensive test beam program to validate detector simulation (see talks of the Test Beam session)

Jet Response Uniformity

Jet energy calibrated at **EM scale** / normalized to **MC truth energy**

Calorimeter response depends on:

- dead material and gaps
- level of non-compensation

Preclustering and Noise Treatment

Start with cells calibrated at EM scale

Three methods:

- Build and precluster projective towers:
 - Sum energy of cells in towers of $\Delta\eta \times \Delta\phi = 0.1 \times 0.1$
 - Compensate towers with negative energy with its positive neighbors.

(default option)

- Build topological cell clusters:
 - Nearest-neighbor clustering cells around a seed with significant signal (4σ,2σ,0σ noise)
 - Clusters = EM shower or hadronic sub-showers
 - Removes cells with insignificant signals (unclustered).

(under study)

- Select cells with 2σ symmetric cut:
 - Removes all cells with |E|< 2σ noise.

Negative energy left in preclusters

Jet clustering

For jet clustering three typical algorithms are used:

Seeded Cone algorithms

- Collect neighbors around a seed in a radius R (+ split/merge)
 - **Cone 0.7**: R = 0.7

 To avoid fragmentation loss for low Pt jets.
 - Cone 0.4: R = 0.4

Necessary at high luminosity and to separate overlapping jets (high Pt resonance disintegration).

Kt algorithm

- Algorithm that merges particles based on radial distance and transverse momentum (D parameter "Jet Size" =1)
- Study detector and physics effects for the 3 cases

Jet energy calibration to particle level

Calibration aim: Energy resolution minimization with linearity constraint Correct for dead material and non compensation

- Jet calibration various strategies:
 - Apply weight to each cell.
 - Apply weight to calorimeter layers.
 Simple and fast but less performant.

Different ways to take into account eta and jet energy dependence and additional correction for dead material.

- Default calibration:
- $E_{rec} = \sum_{i} W(Ecell_{i} / V_{i}, sampling)Ecell_{i}$
- A factor R(ET,η) = ETrec/ETMC is applied to correct for residual non linearities and for algorithm effects.

Jet energy resolution 1

• In situ physics processes

 In situ physics processes provides a way to calibrate the jets to parton level and validate the MC simulation, specially the physics effects:

Dijets

Cross calibrate the detector

Gamma / Z (→ II) + jet

- Parton level calibration, jet clustering, UE studies...
- Well understood EM reference recoiling against hadronic system
- Large statistics available at L=10³³cm⁻²s⁻¹:
 - pT range from 20 GeV to 60 GeV: Z(→II)+jet ~2Hz and γ+jet ~ 0.1 Hz
 - pT range > 60 GeV: (expected threshold for single γ) γ +jet ~2Hz and Z+jet ~ 0.1 Hz

$W \rightarrow jet jet$

- Parton level calibration
- Resonance with precisely known mass decaying into two jets
- Statistics (L=10³³cm⁻²s⁻¹): few hundred per day (depending on b-tagging)

• In situ – Gamma + jet 1

- Two complementary Methods:
 - Pt balance:
 - Calculated from the leading recoiling jet and photon.
 - Sensitive to out of cone showering, gluon radiation, UE and detector effects.
 - Relative jet clustering studies

$$\Delta p_{t} = \frac{p_{t}^{jet} - p_{t}^{\gamma}}{p_{t}^{\gamma}}$$

- Vector sum of everything in the calorimeter.
 Sensitive to particle response only.
- Recoil of complete hadronic system against the photon

$$R = 1 + \frac{\overrightarrow{E}_{t}^{miss} \cdot \overrightarrow{E}_{t}^{\gamma}}{\overrightarrow{E}_{t}^{\gamma} \cdot \overrightarrow{E}_{t}^{\gamma}}$$

$$\vec{E}_t^{miss} = -\sum_{calo} \vec{E}_t^{calo}$$

• In situ - Gamma + jet 2

- Most probable values of the Pt balances
- Differences between cone algorithms

Compare this results with real data

In Situ – W → j j

- W mass well defined
- Use $W \rightarrow j j$ in ttbar events to calibrate jets at parton level
- Use Cone 0.4 for efficient jet reconstruction in busy event environment
- $M_W^{PDG} = M_W^{rec} \sqrt{(\alpha_1 \alpha_2)}$, $\alpha_i = E_i^{part}/E_i^{jet}$
- This calibration can be applied to events with similar jet type (q, g). E.g. Z + jet.

Conclusions

- Different strategies for signal reconstruction and jet energy calibration are being studied.
- Strategy for first data is being designed.
 - Analysis of in situ information is being prepared.
 - Validation / measurement of important factors (fragmentation, UE...) must be done with data.

Backup slides

y+jet 6: Dijet background

Default CBNT cuts: S/B~10% Efficiency γ ~ 90%

Data sample Athena 7.2.0 DC1 data

Optimised cuts: S/B~30% Efficiency γ ~ 15%

low pT sample <ET>~30 GeV

Mean	Cone 0.4	Cone 0.7	kT
(-0.6, 0.6) window			
Signal	-13 ± 0.8%	2 ± 0.9%	1 ± 0.9%
Background	-15 ± 2%	1 ± 2%	-1 ± 2%

remaining jet background $\approx \pi^0$

statistical error

Calibrating to Particle Jet

2 step procedure

1. Calibrated energy is calculated as:

$$E_{Raw} = \sum_{s} Ecell_{s}$$

$$E_{Rec} = \sum_{s} w(Ecell, CellPosition) Ecell_{s}$$
 Cell weighting

the w(Ecell, CellPosition) coefficients are obtained by minimizing the energy resolution to the MC truth with the linearity constraint. Same weights are used for different algorithms.

2. A factor $R(E_T,\eta) = E_T rec/E_T MC$ is applied to correct for residual non linearities and for algorithm effects.

• In situ – **Z + jet**

- EM scale
- Pt balance flatter in eta
- E, R and out-of-cone showering increase with η

0.85 | Mean | 7.5673 | Mesh |

R vs abs(Eta)

Check that MC reproduce data behavior

Atlas Calorimeters – Response uniformity

