
Development of Particle Flow Algorithms (PFA) at Argonne for the Future ILC

Presented by

Lei Xia ANL - HEP

Why do we need PFA for ILC

Process					lorimetry				Integration :					Pol.	1 <mark>.</mark>	
	σ_{IP}	$\delta p/p^2$	ϵ	δE	$\delta\theta,\delta\phi$	Trk	Cal	θ_{min}^e	δE_{jet}	M_{jj}	$\ell ext{-}\mathrm{Id}$	V^0 -Id	$Q_{jet/vtx}$			
$ee \to Zh \to \ell\ell X$		x									x					
ee o Zh o jjbb	x	x	x			x				x	x					
ee o Zh, h o bb/cc/ au au	x		x							x	x					
$ee \to Zh, h \to WW$	x		x		x				x	x	x					
$ee \rightarrow Zh, h \rightarrow \mu\mu$	x	x									x				15 ICD	
$ee \rightarrow Zh, h \rightarrow \gamma\gamma$				x	x		x				ı				15 14-JCB	
$ee \rightarrow Zh, h \rightarrow {\mathrm i} nvisible$			x			x	x				ı				134	
$ee \rightarrow \nu \nu h$	x	x	x	x			x			x	x				ATLAS	
$ee \rightarrow tth$	x	x	x	x	x		x	x	x		x				12 H1	
$ee \rightarrow Zhh, \nu \nu hh$	x	x	x	x	x	x	x		x	x	x	x	x	x	- u- 111/	
$ee \rightarrow WW$					1					x			x		> 10+	
$ee \rightarrow \nu \nu WW/ZZ$						x	x		x	x	x				O C C C C C C C C C C C C C C C C C C C	
$ee \to \tilde{e}_R \tilde{e}_R$ (Point 1)		x	Ī			Ī	İ	х		Ì	x			x		
$ee ightarrow ilde{ au}_1 ilde{ au}_1$	x	x						x							ALEFIT	
$ee ightarrow ilde{t}_1 ilde{t}_1$	x	x							x	x	l	x			- 11	
$ee \to \tilde{\tau}_1 \tilde{\tau}_1 \text{ (Point 3)}$	x	x			x	x	x	x	x						⊕ 4	
$ee \to \tilde{\chi}_2^0 \tilde{\chi}_3^0 \text{ (Point 5)}$									x	x	ı				D 5	
$ee \rightarrow HA \rightarrow bbbb$	x	x								x	x				4	
$ee o ilde{ au}_1 ilde{ au}_1$			x												Proposed ILC	
$\chi_1^0 o \gamma + ot \!\!\!\!/ \hspace{0.5cm} E$					x						ı				1 Toposcu ILC	
$\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 + \pi_{soft}^{\pm}$			x					x								
$ee \rightarrow tt \rightarrow 6 \ jets$	x		x						x	x	x					
$ee \rightarrow ff \ [e, \mu, \tau; b, c]$	x		x				x		x		x		x	x	0 25 50 75 100 125 150 175 200 225 250	
$ee \rightarrow \gamma G \text{ (ADD)}$				x	x			x						x		
$ee o KK o far{f}$		x									x				E _{jet} GeV	
$ee \rightarrow ee_{fwd}$						x	x	x							iet SC v	
$ee o Z\gamma$		x		x	x	x	x									

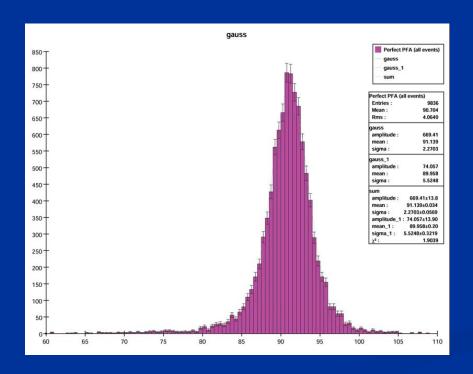
- Physics Benchmarks for the ILC Detectors

Goal = 30%/ √ E_{jet}

Key: Calorimeter

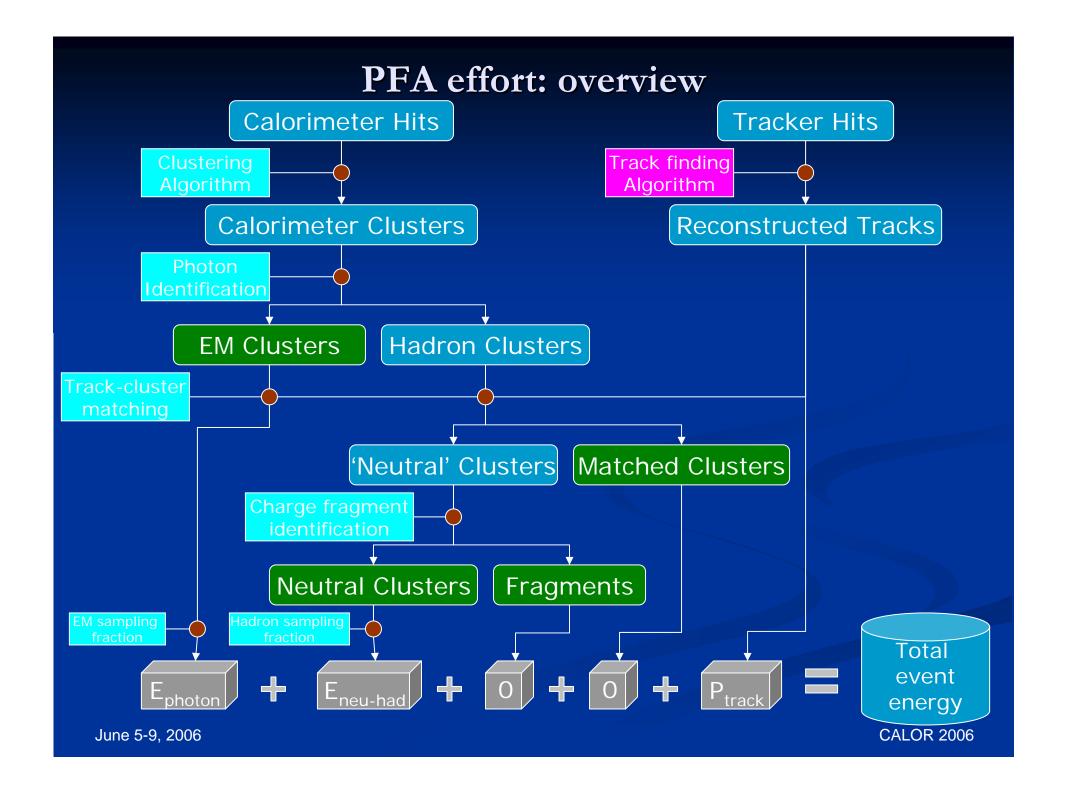
Particle Flow Algorithm

Why do we need PFA for ILC


Measure jets in the PFA way...

Particles in Jets	Fraction of jet energy	Measured with			
Charged	65%	Tracker, negligible uncertainty			
Photon	25%	ECal, 15%/ √ E			
Neutral hadron	10%	ECal + HCal, ~50-60%/ √ E			

- Clear separation of the 3 parts is the key issue of PFA
 - Charged particle, photon and neutral hadron: all deposit their energy in the calorimeters
 - Maximum segmentation of the calorimeters is needed to make the separation possible
- One Major R&D issue: development of PFA
 - Meets the ILC goal for jet energy resolution
 - Can be used for detector optimization
- Argonne has two parallel efforts on PFA development


Perfect PFA: NO algorithm effect

- Take MC track momentum as the energy of charged particles
- Remove calorimeter hits associated with charged particles
- Sum up everything else in the calorimeter as neutral energy
 - Apply appropriate sampling fractions for photon hits and neutral hadron hits
- Z-pole events, no jet algorithm applied

Example: SiD aug05_np

central peak ~2.3 GeV (no event selection)

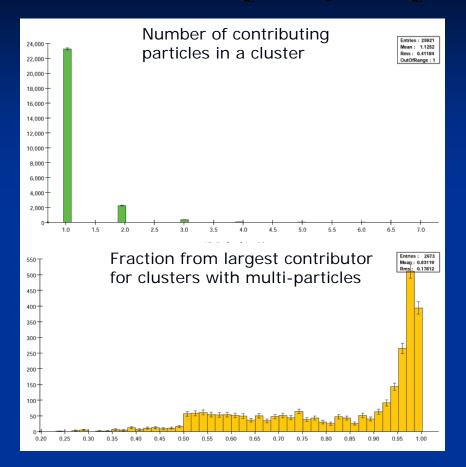
Clustering algorithm: hit density

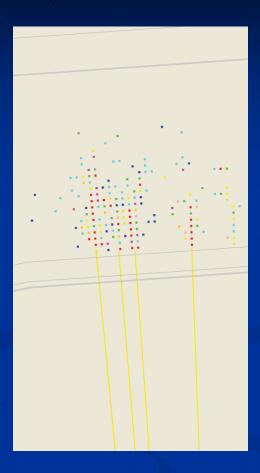
With
$$V_3 = V_f$$
 (if $(V_f \cdot R_{ij}) > 0$) or V_b (if $(V_b \cdot R_{ij}) > 0$)

- Hit density reflects the closeness from one hit i to a group of hits {j}
 - {j} = {all calorimeter hits} to decide if hit i should be a cluster seed
 - {j} = {all hits in a cluster} to decide if hit i should be attached to this cluster
- Consider cell density variation by normalizing distance to local cell separation
 - Density calculation takes care of the detector geometry
 - Clustering algorithm then treat all calorimeter hits in the same way

Clustering algorithm: grow a cluster

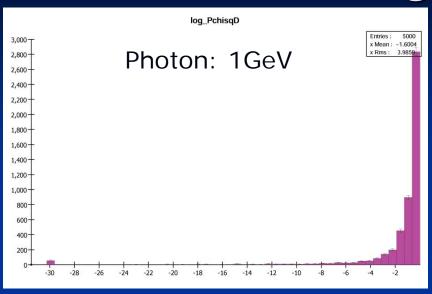
- Find a cluster seed: hit with highest density among remaining hits
- Attach nearby hits to a seed to form a small cluster
- Attach additional hits based on density calculation
 - i = hit been considered, {j} = {existing hits in this cluster}
 - EM hits, D_i > 0.01
 - HAD hits, D_i > 0.001
 - Grow the cluster until no hits can be attached to it
- Find next cluster seed, until run out of hits

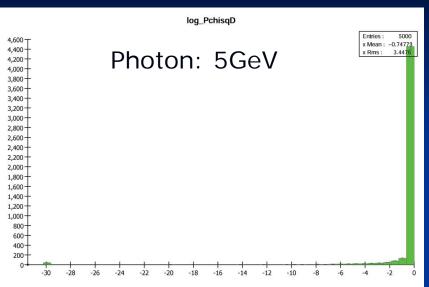

Density driven clustering

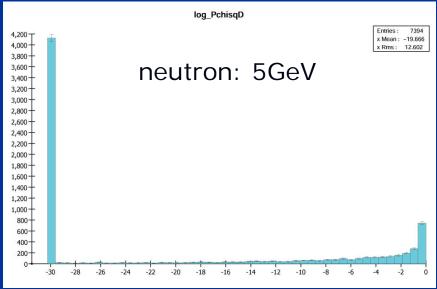

Particle	ECal hit efficiency	HCal hit efficiency	Overall hit efficiency	Overall energy efficiency
Photon (1GeV)	89%	43%	89%	91%
Photon (5GeV)	92%	54%	92%	96%
Photon (10GeV)	92%	61%	92%	97%
Photon (100GeV)	95%	82%	95%	>99%
Pion (2 GeV)	78%	59%	75%	71%
Pion (5 GeV)	81%	70%	79%	80%
Pion (10GeV)	84%	80%	83%	85%
Pion (20GeV)	85%	87%	88%	91%

- Typical electron cluster energy resolution ~ 21%/sqrt(E)
- Typical pion cluster energy resolution ~70%/sqrt(E)
- All numbers are for one main cluster (no other fragments are included)

June 5-9, 2006

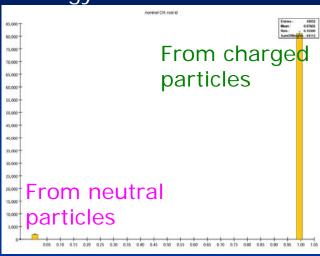

Cluster purity: Z pole (uds) events



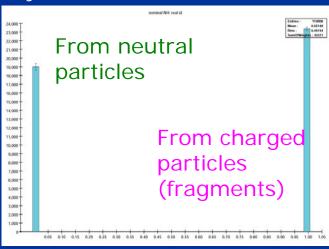


- Most of the clusters (89.7%) are pure (only one particle contributes)
- For the remaining 10.3% clusters
 - 55% are almost pure (more than 90% hits are from one particle)
 - The remaining clusters contain merged showers, some of them are 'trouble makers'
- On average, 1.2 merged shower clusters/Z pole event

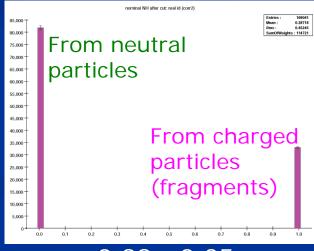
Photon id – longitudinal H-matrix



Still need more tuning to optimize the performance

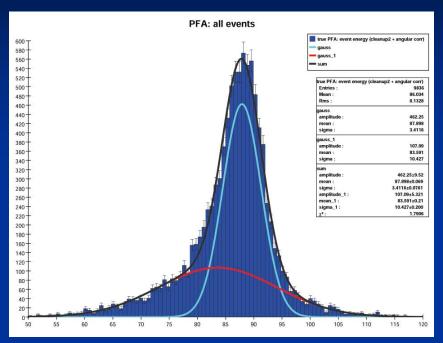

Charge fragment identification/reduction

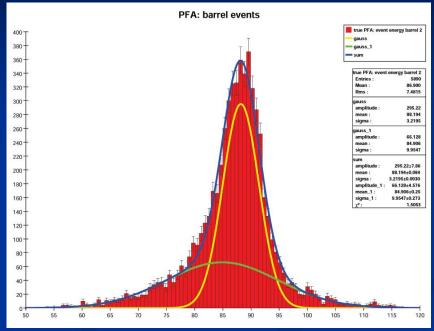
Energy of matched clusters



 Use geometrical parameters to distinguish real neutral hadron clusters and charge hadron fracments

Energy of clusters not matched to any track: neutral candidate


After charge fragment identification/reduction

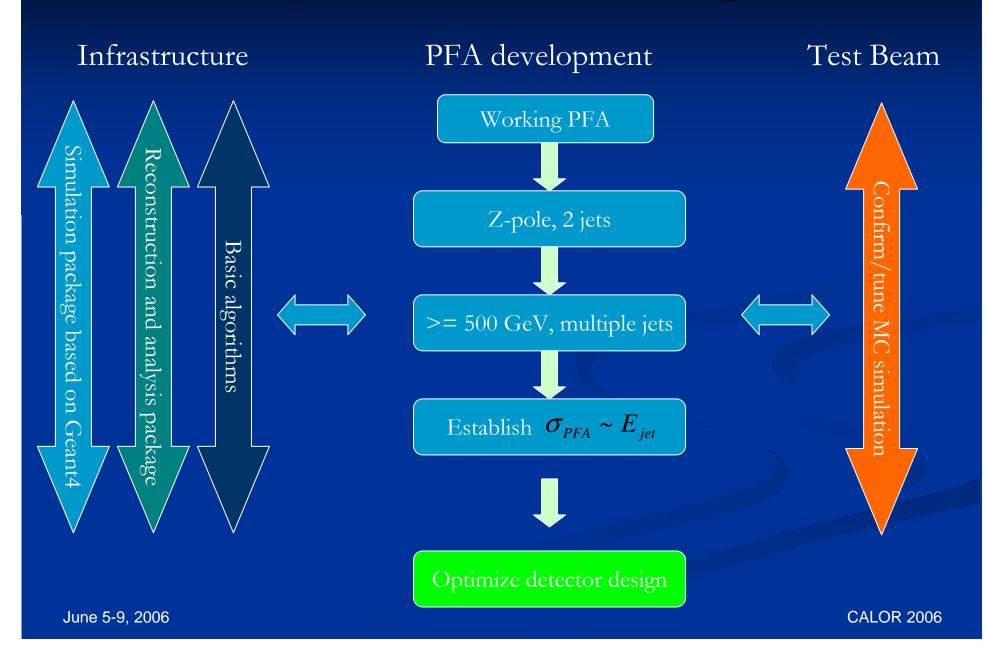


0.88: 0.35 CALOR 2006

June 5-9, 2006 1: 1.24

PFA: Z-pole (uds) performance

All events:


3.41 GeV @87.9GeV 58.5% 10.4 GeV 41.5% Barrel events: 60%

3.22 GeV @88.2GeV 59% 9.95 GeV 41%

Barrel: -45 deg < Theta (uds quark) < 45 deg

SiD aug05_np

My un-official PFA roadmap

Summery

- Particle Flow Algorithms are being developed at Argonne
 - Two 'complete' PFAs are available to play with
- Current PFA performance at Z-pole looks promising
 - Performance at Z-pole will continue to improve
 - Not a problem to achieve ILC goal at this energy range
- Need to study PFA performance over the entire ILC interested jet energy range
 - Prove that PFA is the way to achieve the ILC jet energy resolution goal
 - Use PFA to optimize ILC detector design
- Test beam data need to come in time!