Conclusions

 $P(e^+)$

Physics Related Instrumentation for the ILC

J. List

DESY Hamburg

Technical Baseline Review, October 24 2011

Introduction Beam Energy Measurement Beam Polarisation Measurement Positron Issues Conclusions

Physics Related Instrumentation for the ILC

Introduction	Beam Energy Measurement	Beam Polarisation Measurement	$P(e^+)$	Conclusions
Introduction				

Goals & Requirements for physics instrumentation

- luminosity: 10^{-3} (ew precision 10^{-4})
- beam energy: 10^{-4} (ew precision: few 10^{-5})
- polarisation: $\Rightarrow 2.5 \cdot 10^{-3}$ (ew precision 10^{-3})
- ▶ but: measurement location usually not e⁺e⁻ IP
 ⇒ "interpolation"
- and: physics analyses need not only E and L = ∫ Ldt, but dL/d√s, and luminosity weighted average polarisation!

The Key Players - Upstream of the e^+e^- IP

Compton-Polarimeter

- 1.8 km upstream of IP
- backscattering of circular polarised laser
- ► asymmetry w.r.t. laser helicity → polarisation

BPM based Energy Spectrometer

- 700 m upstream of IP
- measure beam position in chicane
- \blacktriangleright resolutions of $\simeq 1 \mu {\rm m}$ achieved

The Key Players - Extraction Line

- GamCal: 0 5 mrad, ca 100 m from IP, total radiation loss
- Energy Meas. (Synchr. Imaging)
- Compton-Polarimeter

Complementarity

Polarimetry & Beam Energy Measurements

- aiming for extreme precisions
- need to interpolate to IP
- different beam conditions
- different technologies
- ▶ two devices mean: complementary, redundancy, cross-check

 \Rightarrow not luxury, but necessary to achieve physics goals!

Energy range

Polarimetry & Beam Energy Measurements

- all devices need to be operational at all beam energies
- ▶ scan between $E_b = 100 \text{ GeV} \dots 250 \text{ GeV} (500 \text{ GeV})$
- ... and calibration at the Z pole
- , working point" should be independent of E_b in order to control systematics!

The BPM-based Energy Spectrometers

- prototype operated sucessfully at Endstation A at SLAC
- ▶ resolutions of $\simeq 1\mu$ m achieved → matches ILC baseline!
- further improvements down to 100 nm resolution could maybe allow to reduce chicane dispersion, i.e. reduce emittance growth

in current SB2009-Nov10 lattice

- ▶ *e*⁻ beam: 1 directly after end of linac,
 - 1 ca 700 m before IP, after energy collimation
- ▶ e^+ beam: 1 ca 700 m before IP, after energy collimation

e⁻ BPM spectrometer SB2009-Nov10 lattice

- a BPM type BPMSPE079, "energy spectrometer bpm (20 mm bore)"
- ▶ a dipole BEC1 of type H20, length 3 m, bend 0.24272 mrad
- a drift space of 16.1 m
- ▶ a dipole BEC2 of type H20, length 6 m, bend 0.24272 mrad
- a BPM type BPMSPE079
- ... and the same backwards
- fixed dispersion of 5 mm

 $\Rightarrow 0.K.!$

The Downstream Energy Measurement: Synchrotron Radiation Imaging

- detector test at Endstation A
- chicane provides 2 mrad vertical bend + wigglers
- \blacktriangleright array 100 $\mu{\rm m}$ quartz fibers detects Cherekov light

- Detect SR photons on quartz fiber array (~150 µm pitch)
- $\pm 2 \text{ mRad bend over 75 m} \rightarrow 125 \text{ MeV}/100 \ \mu\text{m}$
- Need transverse accuracy of 30 μm at detector plane
- Measure mean beam energy and disrupted tail spectrum

Eric Torrence Physics Related Instrumentation for the ILC **July 2007**

Downstream Energy Measurement - status and requirements

- was fine in RDR, but modifications since haven't been looked at
- main requirement is a secondary focus (same as downstream polarimeter!)
- initial chicane needs enough strength to get the photons out of the downstream stayclear
- might need to adjust some magnet apertures (low P needs larger stayclear!)
- Eric Torrence has a student who could do GEANT4 study (as was done for RDR)
- BUT he'd need help to get the relevant input for this

Downstream Energy Measurement in SB2009-Nov10 lattice

Physics Related Instrumentation for the ILC

J. List

12

The Upstream Polarimeter: new location after tune-up dump

- enough space towards tune-up dump line?
- enough space for extraction of Compton fan?

The Upstream Polarimeter in SB2009-Nov10 lattice

- distance Compton-IP to dump line ca 30 cm at 250 GeV
- fixed field \rightarrow down to ca 20 cm at lowest energies enough?
- what is the yellow thing in dump line? current size meaningful?!
- how big are the chicane magnets really, esp. first dipol group?

The Upstream Polarimeter:

need special beam pipe through out whole chicane

- to allow for varying bending angle
- to guide laser in and out
- to let fan of Compton scattered electrons pass
- to extract Compton fan to detector

Attention: deflection of chicane the otherway round as on previous page!

lengths of dipoles / drifts agree with SB2009-Nov10 lattice

The Upstream Polarimeter: Laser in / out

- Laser enters chicane horizontally (far side from tune-up dump line!)
- final mirror / lens movable to adjust to e⁻ beam
- had been designed to some extent for TESLA (!) by N. Meyners, P. Schüler

Movable Laser Beam

The Upstream Polarimeter: Compton fan out

- need tapered exit window to avoid wake fields
- ▶ again estimate from TESLA: ≈ 10° is fine (opinions?)
- need ~ 1.5 m for detector array, make it 2 m for shielding, accessability,...
- fine with current lattice

The Upstream Polarimeter: Alignment Compton IP vs e^+e^- IP

▶ requirement: control P_z at e^+e^- IP to 0.1%

$$lackslash$$
 $heta_{ ext{spin}} = (a\gamma + 1) \cdot heta_{ ext{orbit}}$

- ▶ ⇒ need to know orbit angle between Compton IP and e^+e^- IP to 20 µrad (10 µrad) at 500 GeV (1 TeV)
- ► level arm at Compton IP ~ 5 m ⇒ require BPM resolution of 100 (50) µm (i.e. 2 orders of magnitude worse than for energy spectrometer)
- more precise study of effects of (mis)alignments in BDS and feed-back system on polarisation under way in time for TDR (M.Beckmann).

SB2009-Nov10 lattice: **no BPMs at all** in polarimeter chicane! Could we pleeeease get some....?

Downstream Polarimeter

6-magnet chicane suggested in 2007 by Ken Moffeit et al:

 \blacktriangleright kick Compton e^- further out of the synchrotron radiation fan

Downstream Polarimeter in SB2009-Nov10 lattice

- still 4-magnet chicane please upgrade to 6-magnet design as propsed in SLAC-PUB-12425
- necessary due to push-pull related changes to the extraction SC quadrupoles
- at the same time gives better shielding of magnets due to additional collimators
- even more impact due to worse spent beam in low power configuration....

Special Positron issues

- fully exploiting $P(e^+)$: cancellation of systematics
- works only with fast helicity reversal also for positrons!
- new baseline initially reduced $P(e^+)$ from 30-45% to 22%
 - corresponds to a 20-30% loss of effective luminosity
 - ► systematic error on polarisation itself will increase c.f. thesis of I.Marchesini on $e^+e^- \rightarrow W^+W^-$: systematic limit at $\delta P/P = 0.14\%$ (0.34%) for $P(e^+) = 60\%$ (30%)
- can be avoided by reoptimisation of e^+ source
- important to keep $P(e^+)$ high for an *irresistable* physics case!

for details see also talk by S.Riemann on Wednesday!

2008: Recommendations to GDE and Research Director

- 1. Separate the functions of the upstream polarimeter chicane. Do not include an MPS energy collimator or laser-wire emittance diagnostics; use instead a separate setup for these two.
- 2. Modify the extraction line polarimeter chicane from a 4-magnet chicane to a 6-magnet chicane to allow the Compton electrons to be deflected further from the disrupted beam line.
- 3. Include precise polarisation and beam energy measurements for Z-pole calibration runs into the baseline configuration.
- 4. Keep an initial positron polarisation of 30-45% for physics, don't reduce to 22% .
- 5. Implement parallel spin rotator beamlines with a kicker system before the damping ring to provide rapid helicity flipping of the positron spin.
- 6. Move the pre-DR positron spin rotator system from 5 GeV to 400 MeV. This eliminates expensive superconducting magnets and reduces costs.
- 7. Move the pre-DR electron spin rotator system to the source area. This eliminates expensive superconducting magnets and reduces costs.

For more Details:

- E&P workshop Zeuthen 2008 http://indico.desy.de/conferenceDisplay.py?confId=585
- its Executive Summary arXiv:0903.2959 [physics.acc-ph]
- publication on beam energy and polarisation measurements JINST 4 (2009) P10015, arXiv:0904.0122 [physics.ins-det]
- recent publication on upstream beam energy measurement: JINST 6 (2011) P02002, arXiv:1011.0337 [physics.acc-ph]
- downstream polarimeter 6-magnet chicane http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-12425.pdf

BACKUP

Physics Related Instrumentation for the ILC

Complementarity of Up- and Downstream Polarimetry

Upstream Polarimeter

- 1.8 km upstream of IP
- clean environment
- \blacktriangleright stat. error 1% after 6 μs
- machine tuning (upstream of tune-up dump)

Downstream Polarimeter

- ▶ 140 m downstream of IP
- high backgrounds
- \blacktriangleright stat. error 1% after \simeq 1 min
- access to depolarisation at IP

Combination

- without collisions: spin transport in Beam Delivery System
- with collisions: depolarisation at IP
- cross check each other!¹

¹c.f. "Spin Dance" Exp., Phys. Rev. ST Accel. Beams 7 042802 (2004)

Polarimetry with Annihilation Data

if no positron polarisation

$$\bullet \ \sigma = \sigma_0 [1 - P(e^-) A_{LR}]$$

$$\blacktriangleright \Rightarrow \frac{\delta A_{LR}}{A_{LR}} = \frac{\delta P}{P}$$

- scale uncertainty enters directly
- ▶ polarimeter calibration: at Z pole w.r.t. to SLD measurement of A_{LR}^2

Physics Related Instrumentation for the ILC

²remember sin $\theta_{\rm eff}$ from A_{LR} and $A_{\rm FB^{had}}$ inconsistent!

Polarimetry with Annihilation Data

if positron polarisation

- $\sigma = \sigma_0 [1 P(e^+) \cdot P(e^-) + (P(e^+) P(e^-))A_{LR}]$
- ► ⇒ correlations matter!
- ► can calibrate polarimeters with modified Blondel Scheme: $|P(e^{\pm})| = \sqrt{\frac{(\sigma_{LR} + \sigma_{RL} - \sigma_{LL} - \sigma_{RR}) \cdot (\pm \sigma_{LR} \mp \sigma_{RL} + \sigma_{LL} - \sigma_{RR})}{(\sigma_{LR} + \sigma_{RL} + \sigma_{LL} + \sigma_{RR}) \cdot (\pm \sigma_{LR} \mp \sigma_{RL} - \sigma_{LL} + \sigma_{RR})}}$
- if $P_L = P_R$ (for each beam)
- if not: corrections \simeq uncorrelated polarimeter error on $P_L P_R$
- advantage: model independent!
- ▶ need to spend substancial amount of running time on LL and RR → expensive!

$$e^+e^-
ightarrow W^+W^-$$

preliminary results from full simulation (ILD)

- Blondel scheme for 100 fb⁻¹ for each helicity state: δP(e⁻)/P(e⁻) = 0.1%, δP(e⁺)/P(e⁺) = 0.2%
- from dσ/d cos θ: large cos θ
 t-channel domianted, P
 changes relative contribution of
 t-channel
- ▶ contribution of new physics?
 ⇒ common determination with triple gauge couplings

fit yields for 20 fb^{-1} : $P(e^{-}) = 80.17 \pm 0.15$, $P(e^{+}) = 60.10 \pm 0.20$ (no backgrounds yet)

Direct measurement of $dL/d\sqrt{s}$ from physics

Acolinear Bhabhas

$$\blacktriangleright \ \frac{\sqrt{s'}}{\sqrt{s}} = 1 - \frac{\Delta \Theta}{2 \sin \Theta_0}$$

- ► ⇒ need excellent forward tracking
- what about machine background?

Radiative Returns

•
$$e^+e^- \rightarrow \mu^+\mu^-\gamma$$

• $\frac{s'}{s} = \frac{\sin \Theta_1 + \sin \Theta_2 - |\sin(\Theta_1 + \Theta_2)|}{\sin \Theta_1 + \sin \Theta_2 + |\sin(\Theta_1 + \Theta_2)|}$

► absolute √s' calibration via Z resonance

• needs
$$\delta \Theta = 10^{-4}$$

How can all these tools be combined to give the best $dL/d\sqrt{s}$?

Available Tools

LumiCal

- ▶ count Bhabha events, typ. $E_{e^+} + E_{e^-} > 0.8 \cdot \sqrt{s}$
- $\int \mathcal{L}dt = N/\sigma$
- σ : theoretical cross-section \rightarrow needs energy spectrum...
- outgoing Bhabhas might be deflected by bunch charge!

Conclusions

The Key Players - e^+e^- Detectors

- LumiCal: 20 50 mrad, high precision lumi, hermeticity
- BeamCal: 5 20 mrad, fast lumi (tuning), collision diagnostics, hermeticity
- PairMonitor: in front of BeamCal, collision diagnostics
- LHCal: more hermeticity

common challenges: precision & radiation hardness!

Available Tools

Beam Parameter Determination

- BeamCal & PairMonitor : N(e[±]), emittances, bunch sizes, waists, offsets,.. (limited by correlations amoung parameters)
- fit from up-down, left-right asymmetries, energy ratios...
- double read-out: fast coarse read-out for lumi tuning detailed read-out for full analysis
- \blacktriangleright GamCal: total energy loss into photons \rightarrow improves resolution

Energy Spectrometers

- upstream: measure energy after linac (no beamstrahlung!)
- downstream: minimize beamstrahlung, measure peak energy and energy spread