Lawrence Livermore National Laboratory

Vacuum Seal R&D

Tom Piggott, <u>Jeff Gronberg</u>, Craig Brooksby, Nick Killingworth

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

LLNL-PRES-495331

We are prototyping the rotating vacuum seal and the pulsed flux concentrating magnet

We have acquired a vacuum tank large enough to accommodate the full size wheel

Full mechanical drawings have been produced and parts have arrived

Lawrence Livermore National Laboratory

Drive motor and rotating cooling water coupling will mount directly on the shaft

The vacuum tank is setup and under vacuum

Lawrence Livermore National Laboratory

All parts are at LLNL except the Daresbury target wheel

Lawrence Livermore National Laboratory

Option:UCRL#

Option:Additional Information

Siemens hollow shaft motor is ready for mounting

Lawrence Livermore National Laboratory

The shaft will be constantly monitored during operation

Lawrence Livermore National Laboratory

We have begun initial vacuum testing of the Rigaku Ferrofluidic Seal in a separate test stand

Lawrence Livermore National Laboratory

We have an existing outgassing test stand that we have modified to test the Rigaku seal

Vacuum Sciences and Engineering Lab Outgassing Measurement Test Stand

Lawrence Livermore National Laboratory

The test stand allows us to rotate the seal up to 2000 RPM with pressure and outgassing measurements

Lawrence Livermore National Laboratory

October 3rd we did our first full test of the Rigaku seal

Scan #	Time	Time	Speed	
	H:M:S	min	rpm	Comments
1	10:32	0	0	started data recording
17	10:35	3	0	took full RGA Scan
20	10:36	4	0	took full RGA Scan
40	10:41	9.2	0	took full RGA Scan
43	10:42	10.2	0	took full RGA Scan
47	10:43	11.2	200	
123	11:03	30.5	200	took full RGA Scan
162	11:13	40.5	200	took full RGA Scan
168	11:14	42	2000	
191	11:20	48	2000	took full RGA Scan
197	11:22	49.6	2000	Torque ramped up & vacuum leak occurred
208	11:24	52.3	0	Stopped motor
235	11:31	59.1	0	Ended data recording

... and we killed it.

Lawrence Livermore National Laboratory

Option:UCRL#

Option:Additional Information

Outgassing looked like it was stabilizing when the seal failed

Temperature data showed no sign of plateauing

- Rigaku reports running at 55 °C without problems
- Temperature was still rising when we turned it off

Lawrence Livermore National Laboratory

Residual Gas Analyzer output showed a spike

Lawrence Livermore National Laboratory

Seal inspected after failure

- No visual signs of failure or residue
- No signs of residue inside the chamber

Checked whether there was a problem on the shaft seal

- O-rings were good.
- No sign of slipping
- No indication of any problem here

Status

- Both Ferrotech and Rigaku assert that these seals should run at 2000 RPM as long as there is cooling water flow
- We are acquiring a plug compatible replacement from Ferrotech
- The Rigaku seal will be returned to Rigaku for post-mortem and repair
- We will continue with assembly of the prototype shaft
 - but we will wait to mount the new seal until after it runs successfully on the test stand

Option:Additional Information

Possible Radiation Damage Testing using the Test Stand

- Ferrofluid is an oil with suspended magnetic particles
- Radiation damage is a concern

2500 - Cobalt-60 spectrum

- Cobalt-60 Irradiation facilities exist
 - Only de/dx
 - Below photoneutron threshold – no activation
- Propose to acquire second seal for destructive testing
- Facilities exist that can provide 300kGy/hour