

International Linear Collider – Technical Design Phase (TDP)

Marc Ross, (Fermilab)
Nick Walker, (DESY)
and Akira Yamamoto (KEK)

A straightforward path to the Energy Frontier

ILC Reference Design Talk - 2007 → →

The Reference Design Report and cost estimate for the International Linear Collider

Marc Ross, Fermilab Jan 31, 2007

Role of Fermilab

- Research and Development of SRF across a broad front:
 - Fundamentals
 - Mass production technology
 - Accelerator operation
 - Cost reduction
- There are no entitlements in the accelerator building business
 - We have to demonstrate competence
 - Our partners are more advanced
 - Timing is critical → 50 KW electron beam
- Your participation is important

Last slide – 2007...

Technical Design Phase:

- R & D to demonstrate and support key design parameters
- Updated <u>technical design</u>
- Practical scenarios for <u>global distribution of</u> mass production of <u>high-technology</u>
- Updated <u>cost estimate</u>
- Documented (2012) in the

TECHNICAL DESIGN REPORT

ILC TDP: Outline

- SRF R & D
 - Cavity
 - Cryomodule
 - Linac w/ beam
- SRF Mass Production and Cost
- Beam Test Facilities
- Siting the ILC
- Path to the Energy Frontier

SRF R & D Goals:

Validate RDR Parameter choices

→ demonstrations at: DESY, US labs, KEK

Fabrication quality and diagnostics

→ Electron Beam Welding & hi-res camera

Surface treatment Recipe

→ Electro-polish chemical rinse

System assembly and test

→ cavity string

Power/gradient overhead w/beam

- → 1.2 GeV, 7 cryomodule string DESY (FLASH)
- → NML, STF at KEK

Global Plan for ILC Gradient R&D

Year	07	200	8 2	009	20	010	2011	2012
Phase		TDP-1			TDP-2			
Cavity Gradient in v. test to reach 35 MV/m		→ Y	ield 5	0%		→	Yield	90%
Cavity-string to reach 31.5 MV/m, with one-cryomodule		Global effort for string assembly and test (DESY, FNAL, INFN, KEK) NML CM1 and CM2			M1 and			
System Test with beam acceleration		FLASH (DESY) , NML (FNAL) STF2 (KEK, test start in 2013)			•			
Preparation for Industrialization		•		P	rod		n Techn R&D	ology

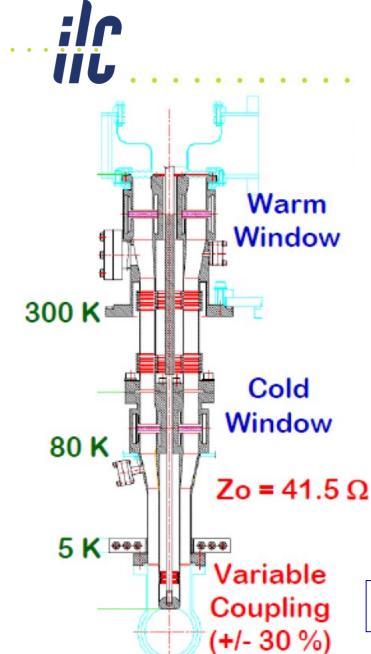
New baseline gradient:

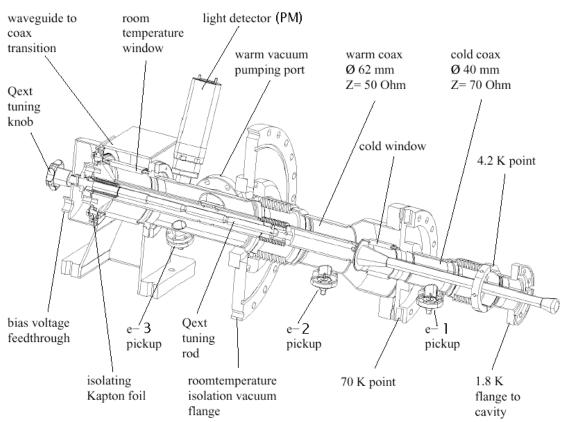
Vertical acceptance: 35 MV/m average, allowing ±20% spread (28-42 MV/m) Operational: 31.5 MV/m average, allowing ±20% spread (25-38 MV/m)

ILC TDP: (1.1)

- SRF R & D:
 - <u>Cavity</u> production *yield* @ nominal avg. gradient:
 - Combining / Unifying results:
 - 31 cavities 2nd pass (50:40:10% / US:DESY:KEK)
 - Challenge: Taming Field Emission
 - 45 MV/m
- SRF Mass Production and Cost
- Beam Test Facilities
- Siting the ILC
- Path to the Energy Frontier

SCRF linac – basic building block




Figure 1.2-1: A TESLA nine-cell 1.3 GHz superconducting niobium cavity.

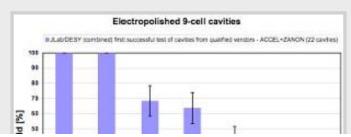
- ~ 70 parts electron-beam welded at high vacuum
 - ~ 1.25 m² x 3mm thick sheet metal
- pure niobium and niobium/titanium alloy
 - niobium cost similar to silver
- weight ~ 70 lbs
- 6 flanges

Cavity production

Two Power Coupler Designs

Adjustable; Both tested / compared

Creation of a Global Database to understand cavity *Production Yield*



One sheet to plot them all

DESY database becomes standard tool for cavity research

The idea sounds simple enough: collect all the data that exist in the world on cavities – nine-cell TESLA-style cavities, to be precise – including all tests, manufacturers and achieved gradients and merge it into a common format so that all cavity professionals around the world can extract the data they need to compare cavity performance and learn. Anyone who has ever set up a database and tried to merge existing data sets into one knows: it's not that easy. However, the ILC's accelerator experts have just decided that they will all use a database system developed by DESY to set up the world's first global cavity database.

The main driver behind this is a key ILC challenge called 'yield' — an efficient word for a concept that means something like 'the probability that cavities will reach the required gradient'. 'Gradient' in turn means the energy imparted by a cavity to electrons or positrons over the distance of one metre — a challenge at the heart of the ILC, because a high gradient means efficient acceleration, which means short accelerators, which in turn means lower cost. Only good statistics give a good picture of the yield. "That's why we are really after statistics, we need this standardisation to be able to compare data from around the world and provide reliable estimates of expected cavity performance," says Camille Ginsburg from Fermilab, who is in charge of the ILC cavity database project.

The ILC cavity-treating labs (Fermilab, JLab, Cornell, DESY and KEK) agreed in July that they would use the DESY database system (developed by Dieter Gall and Vladimir

The new worldwide ILC cavity database features only nine-cell, no single-cell cavities like the one held by Camille Ginsburg in this picture.

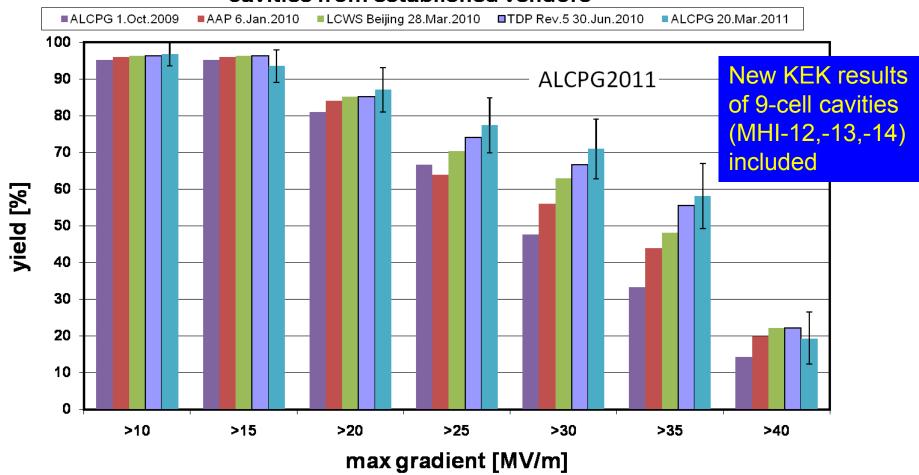
Image: Fermilab.

Global Data Base Team formed by:

Camille Ginsburg (Fermilab)

Rongli Geng (JLab)
Zack Conway (Cornell University)
Sebastian Aderhold (DESY)
Yasuchika Yamamoto (KEK)

Gubarev), and data from 76 cavities have been entered so far

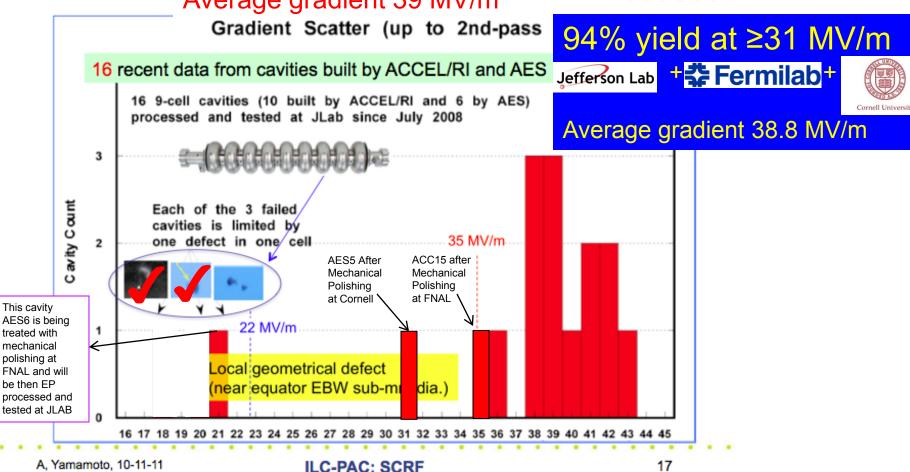

Global ILC Cavity Gradient Yield

Updated at ALCPG2011

Plot courtesy
Camille Ginsburg of FNAL

Electropolished 9-cell cavities

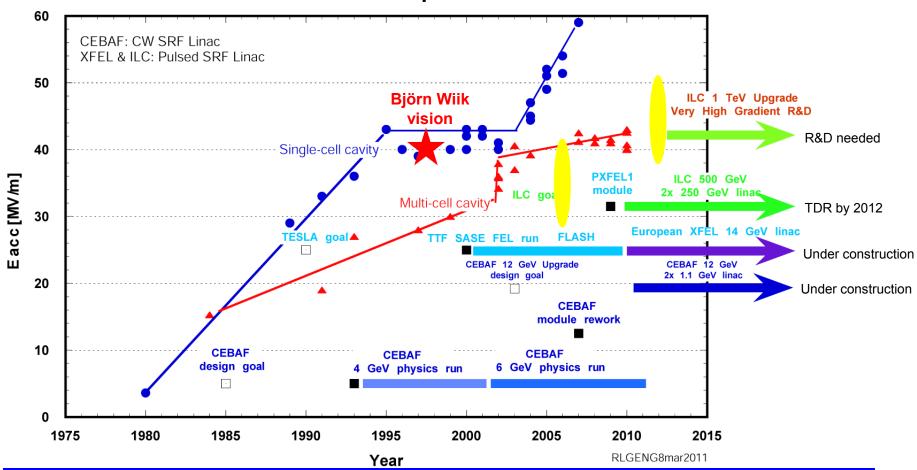
JLab/DESY (combined) up-to-second successful test of
cavities from established vendors



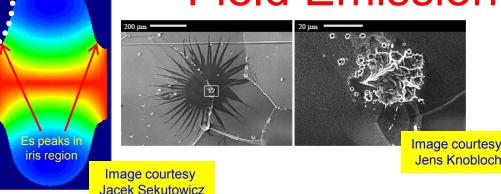
Impact of Mechanical Polishing Today at 6th PAC Meeting in Taipei

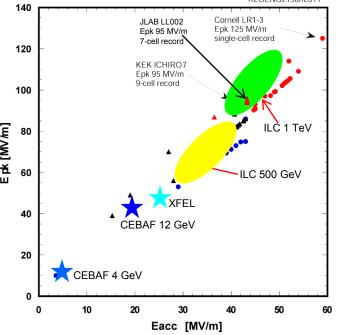
88%

Yield at 35 MV/m achieved at JLAB + FNAL


Average gradient 39 MV/m

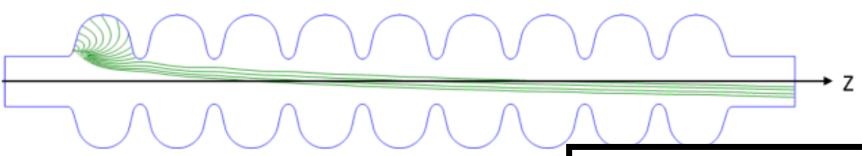
SRF Cavity Gradient Progress


L-Band SRF Niobium Cavity Gradient Envelope and Gradient R&D Impact to SRF Linacs


Steady progress in SRF cavity gradient makes SRF an enabling technology SRF based electron linacs (CW & pulsed) have track record of successful operations

Main Issues at Very High Gradients (1)

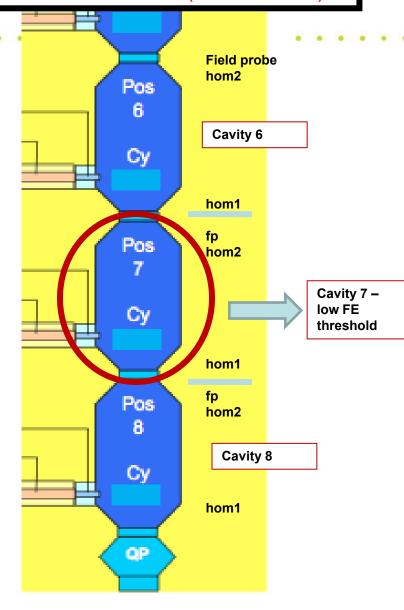
Field Emission / Dark Current


RLGENG21Jan2011 140 Cornell LR1-3 JLAB LL002

Achieved Peak Surface Electric Field in L-band SRF Niobium Cavities (Circle: Single-Cell Cavity; Triangle: Multi-Cell Cavity)

- Peak surface electric field (Epk) a governing parameter
- Physics fairly understood and no known fundamental limit
- Microscopic particles an important family of field emitters
- Epk 100-120 MV/m demonstrated in 1-cell Nb cavities
- Epk100-120 MV/m needed in multi-cell for ILC 1 TeV
 - ➤ Record Epk reached in 9-cell cavity 95 MV/m (KEK ICHIRO7)
 - > Improved HOM coupler cleaning is necessary

Field emission is a known problem and has not been completely resolved, despite recent progress in post-EP cleaning advancement. Sudden field emitter turn-on in 9-cell cavities has been reported by almost all labs. Pushing Epk into 100-120 MV/m regime is necessary for reaching Eacc 40-45 MV/m. It is most likely new processing technology needs to be applied besides HPR. Promising work has started in this direction such as snow cleaning, plasma cleaning and HOM horn cleaning.


- 9 cell dark current simulation
 - (Ginsburg IPAC2010)

- Field Emission / Dark Current
- Field emitted current shows non-linear increase as gradient is raised – roughly following 'Fowler-Nordheim' scheme.
 - Clear, repeatable field emission threshold
- A field emission point is a 'diode' →
 - dark current is 'bunched' w/characteristic time structure
- Will radiate harmonics of the fundamental 1.3GHz (up to ω ~ 1/bunch length)

Cryomodule 'PXFEL-3' (DESY CMTB)

Experiment:

- Look for 2nd / 3rd harmonics (DESY)
 - cavity 7, PXFEL 3 contaminated
 - 15MV/m threshold
- Check both HOM pickups and field probe
 - − → signal easily seen
- compare amplitude of harmonics above & below the threshold

2nd/3rd harmonic change:

- above below FE threshold:
 - changing klystron output by 20%

Voltage increase	Cav6 HOM1	Cav7 – FP	Cav7 – HOM2	Cav7 – HOM1	Cav8 FP
2.6 GHz	8db (x2.5)	8dB (x2.5)	0dB	3dB (x1.5)	-4dB
3.9GHz	-2dB	2dB (18 dB (x7.5)	-7.5dB	3dB

Conclusion:

- a strong signal; seems to respond above/below FE
- but many questions; esp. klystron harmonics...

ILC TDP: (1.2)

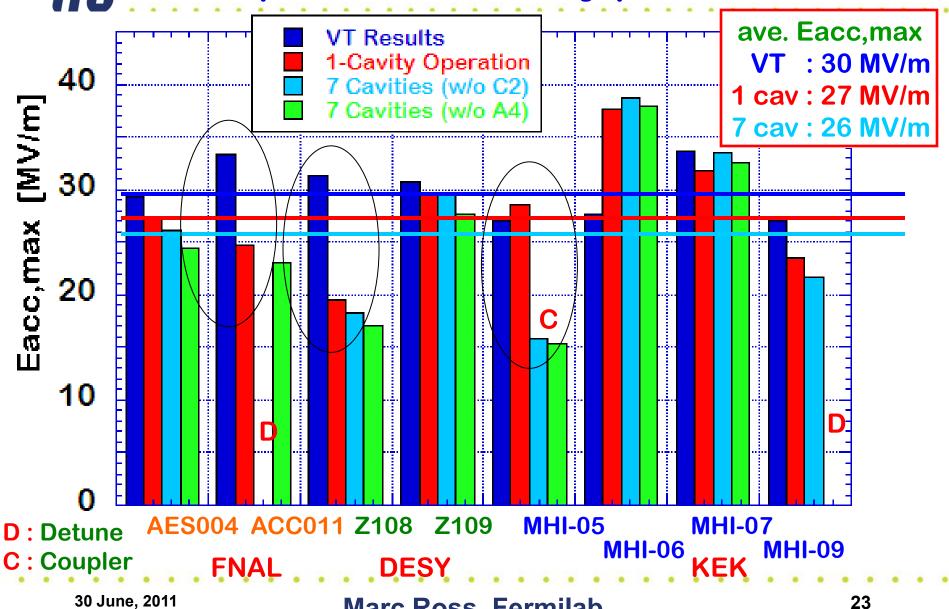
- SRF R & D:
 - Cryomodule string assembly / design
 - Compare distinct designs/interfaces: S1 Global
 - Fermilab CM1 @ NML
 - Lorentz-Force Detuning Compensation
 - Industrial High-Technology: Tuning Machine
 - FLASH: 1.2 GeV / 56 cavities → Field emission
- SRF Mass Production and Cost
- Beam Test Facilities
- Siting the ILC
- Path to the Energy Frontier

S1 Global Cryomodule - KEK

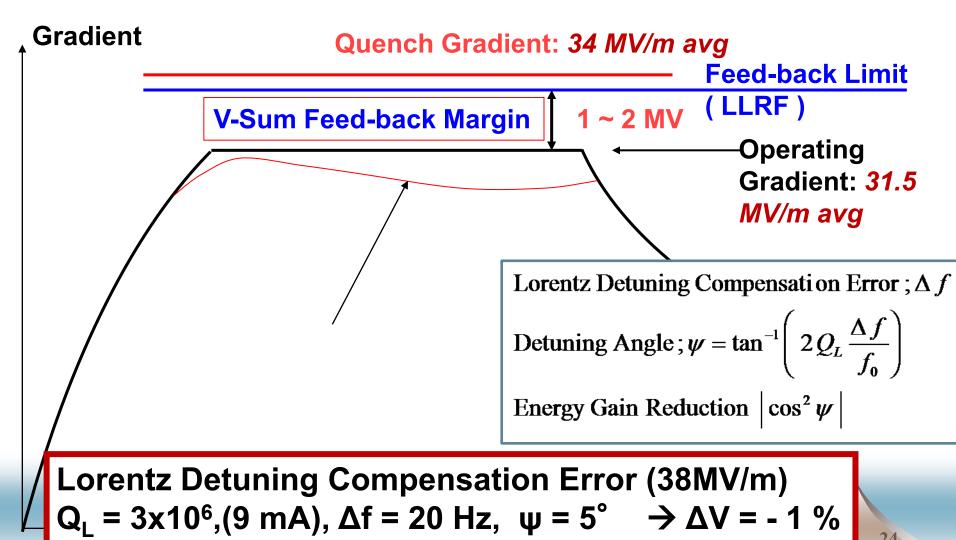
Goal:

1. Integrate cavity efforts

- to understand and / or highlight differences
- 1) Mechanical Stiffness, 2) Tuner, 3) Power Coupler


2. Help define plug-compatibility interfaces

RDR 6.1.4:

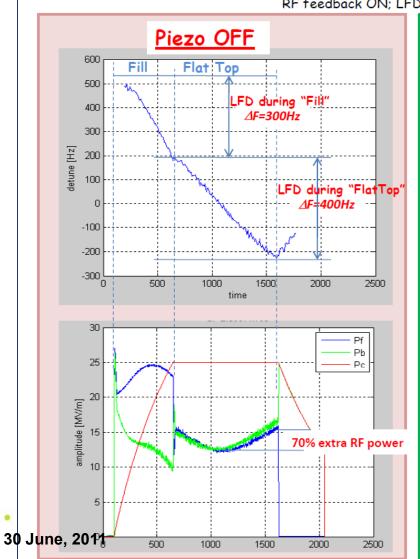

- "The European estimate for the cavities and cryomodules is used for the ILC value as it is the most mature, in terms of R&D and industrial studies. Estimates from the other regions provide a crosscheck."
- TDR cost estimate will have a global basis

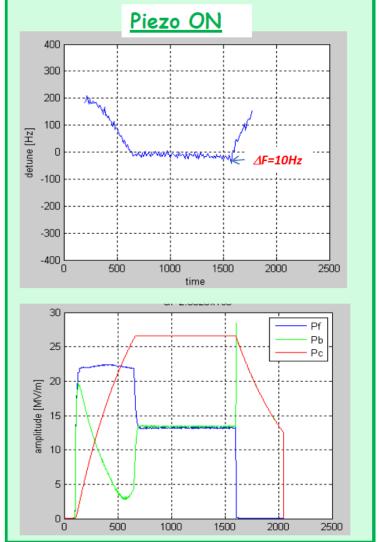
Comparison of cavity performance

Highest Gradient Operation

 $Q_L = 7x10^6$, (5 mA), $\Delta f = 20$ Hz, $\psi = 12^\circ \rightarrow \Delta V = -4\%$

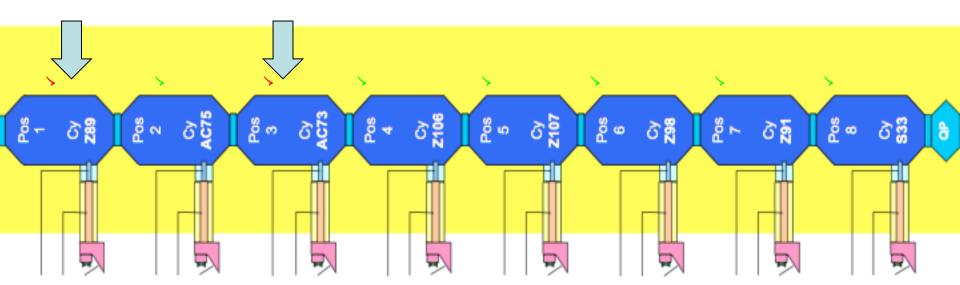
24

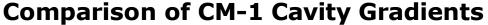


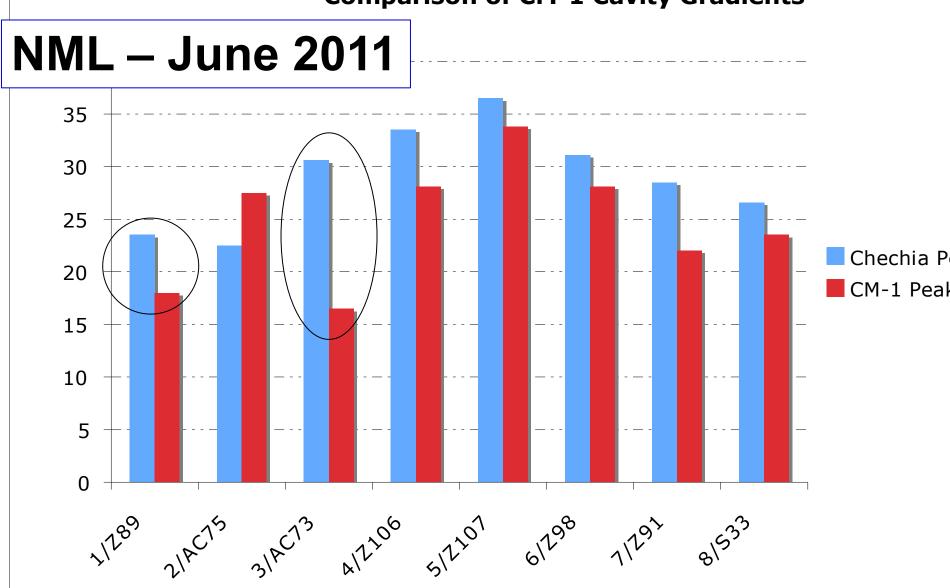

FNAL Piezo Control System

Warren Schappert and Yuriy Pischalnikov (FNAL)

C4-DESY Cavity/Tuner System LFD at Eacc=25MV/m

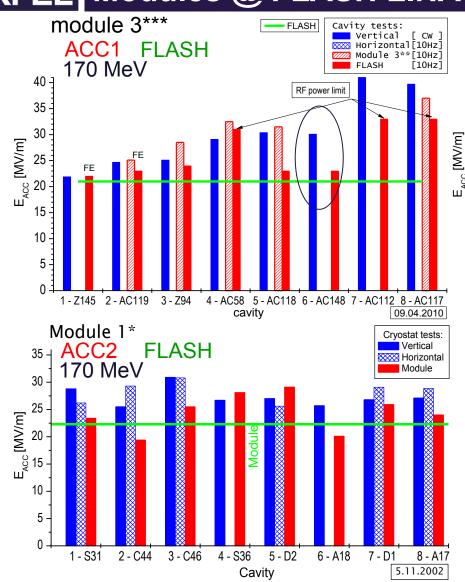

RF feedback ON; LFD Compensation "FlatTop" only

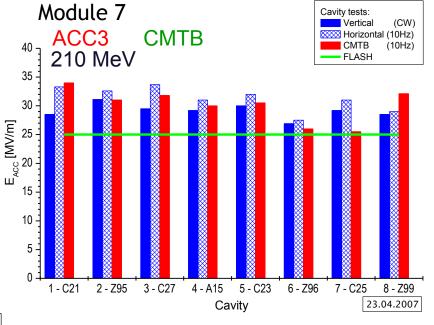



NML - CM1

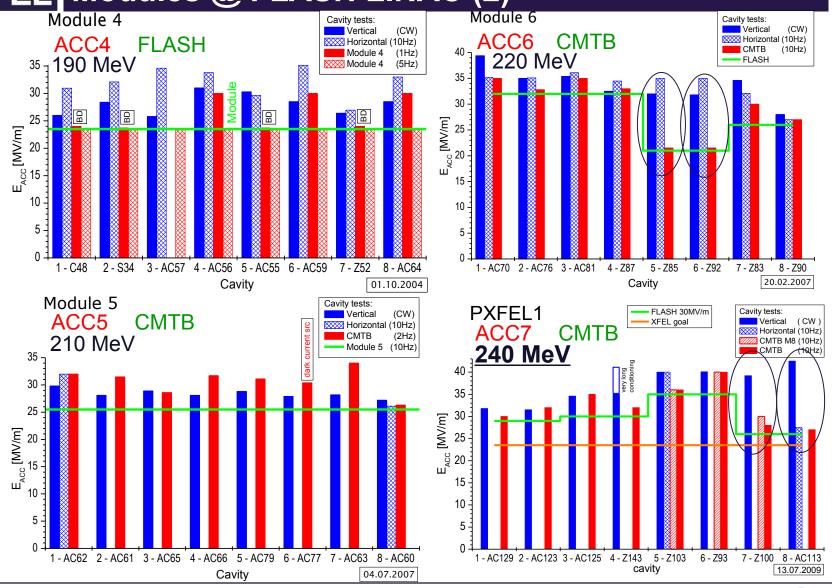
- All cavities individually evaluated (June 2011)
- Elvin Harms, AD

- Cavity 1 and 3 operation may be limited by field emission
- But → expected strong radiation is not observed ...
- May be below ~100 KV or well collimated




Cavity #

Modules @ FLASH LINAC (1)


7 Modules are used now at FLASH LINAC at DESY. 3 modules were tested at FLASH and 4 modules were tested at CMTB facility.

ILC - 261.5 MeV / CM

European

ILC TDP: (1.3)

- SRF R & D:
 - SC Linac w/Beam: FLASH (DESY)
 - Feedback and Overhead:
 - mid-2010 performance jump (3.9 / beam-based feedback)
 - High current modeling and optimization
 - Post 2012
- SRF Mass Production and Cost
- Beam Test Facilities
- Siting the ILC
- Path to the Energy Frontier

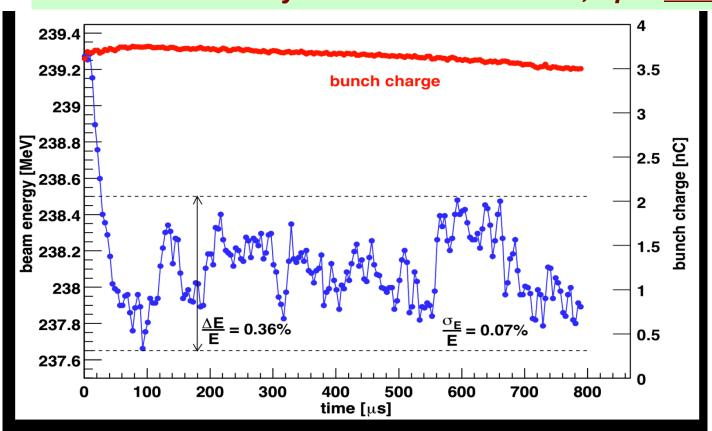
SRF test linac objectives

Demonstration of:

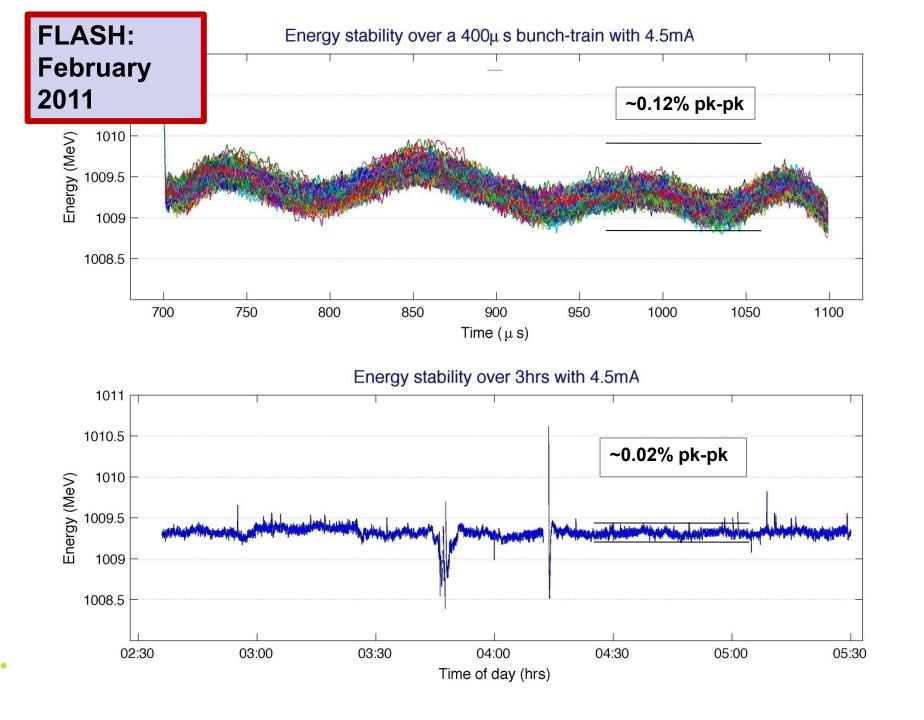
accelerating gradient

With specified:

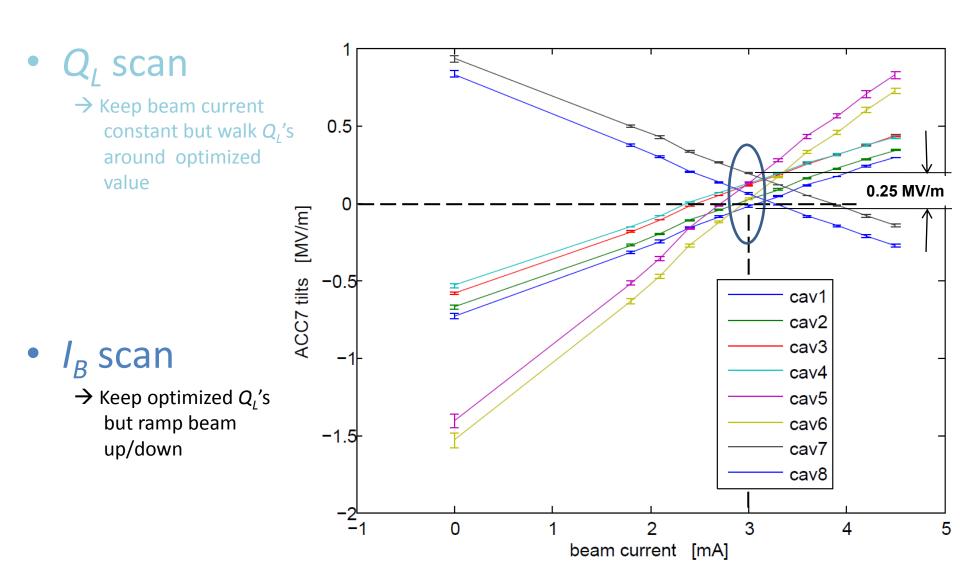
- Beam phase and energy stability at full current;
 with gradient spread
- Gradient and RF power overhead


to establish technology for:

- controlling beam loading effects
- Lorentz Force detuning compensation
- in both static and dynamic conditions



Feasibility demonstation at TTF (8mA, 800us)


From ICFA Beam Dynamics Newsletter #24, April 2001

- 2 cryomodules, 8+8 cavities, single klystron
- 238MeV final beam energy
- 3.5nC/bunch 1800 bunches @ 2.25MHz

Assessing the accuracy of the model

(Tilt: gradient change during 400 us beam pulse)

Achievements: SRF Linac – FLASH (DESY)

High beam power and long bunch-trains (Sept 2009)

Metric	ILC Goal	Achieved
Macro-pulse current	9mA	9mA
Bunches per pulse	2400 x 3nC (3MHz)	1800 x 3nC 2400 x 2nC
 Cavities operating at high gradients, close to quench 	31.5MV/m +/-20%	4 cavities > 30MV/m

Gradient operating margins (Feb 2011)

Metric	ILC Goal	Achieved
 Cavity gradient flatness (all cavities in vector sum) 	2% ΔV/V (800μs, 9mA)	2.5% ΔV/V (400μs, 4.5mA) "Methodology established"
Gradient operating margin	All cavities operating within 3% of quench limits	(Focus of early 2012 run)
Energy Stability	0.1% at 250GeV	<0.15% p-p (0.4ms) <0.02% rms (5Hz)

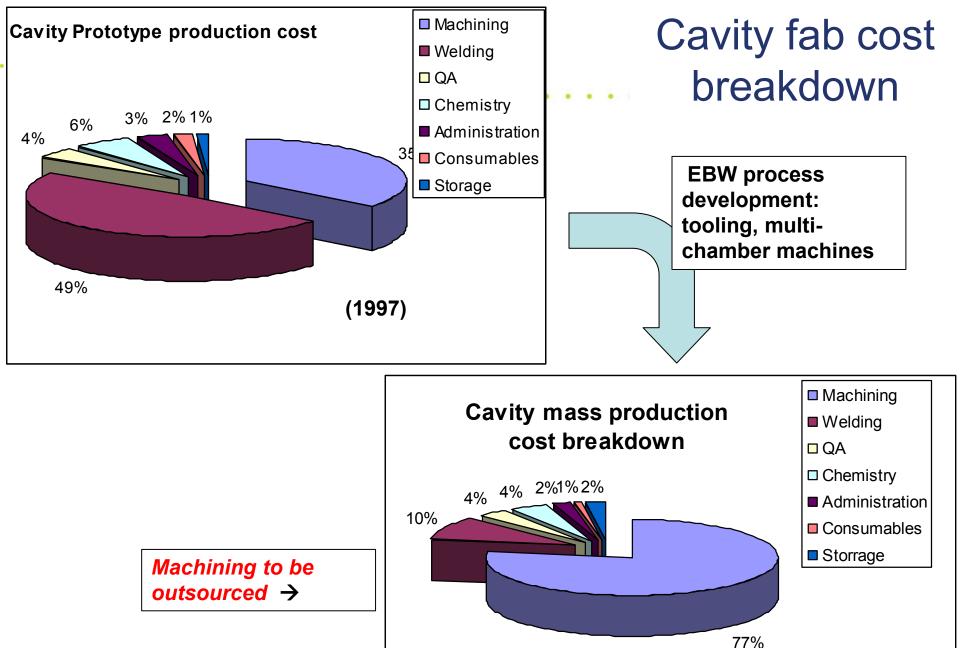
ILC TDP: (2.1)

SRF R & D

- SRF Mass Production and Cost
 - Global cavity fabrication model
 - Tie to ILC Project Governance
 - TESLA industrial studies (~10 years old)
 - Breakthrough welding costs → 'Pilot Plant'
 - Commercializing SRF
- Beam Test Facilities
- Siting the ILC
- Path to the Energy Frontier

Mass Production of SRF

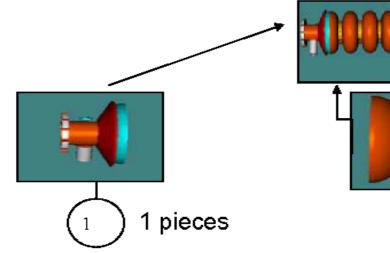
2005:

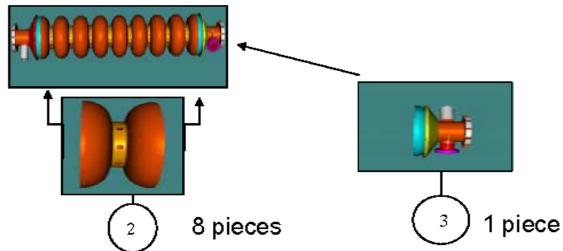

- RDR cost based on central control
 - DESY-led industrial studies
 - Modeled after LHC
- Large process improvements assumed
 - But only 1 ½ qualified cavity vendors in 2005

2011:

- Independent markets developing
 - Expect ~10 qualified cavity vendors ←
- Joint workshops: 2010, 2011

European cost / mass production evaluation by Industrial Studies, cont.


- Complete planning of new "core tech" factory
 - Determine costs for buildings, investment, man power, ramp up & production & ramp down, overhead, consumables, QC,...
 - Get bits for outsourced parts
 - Sum up total cost of component fabrication
- NO learning curve assumed (e.g. -10% for doubling the production)
- But assumption: stable production after about 50 cavities, couplers,...
 - Is verified e.g. by LHC magnet production: assembly time reached stable (and predicted) level after about 40 magnets
- This cost model is valid because it was developed by experienced companies. Additional studies would require time, money and competent industry.

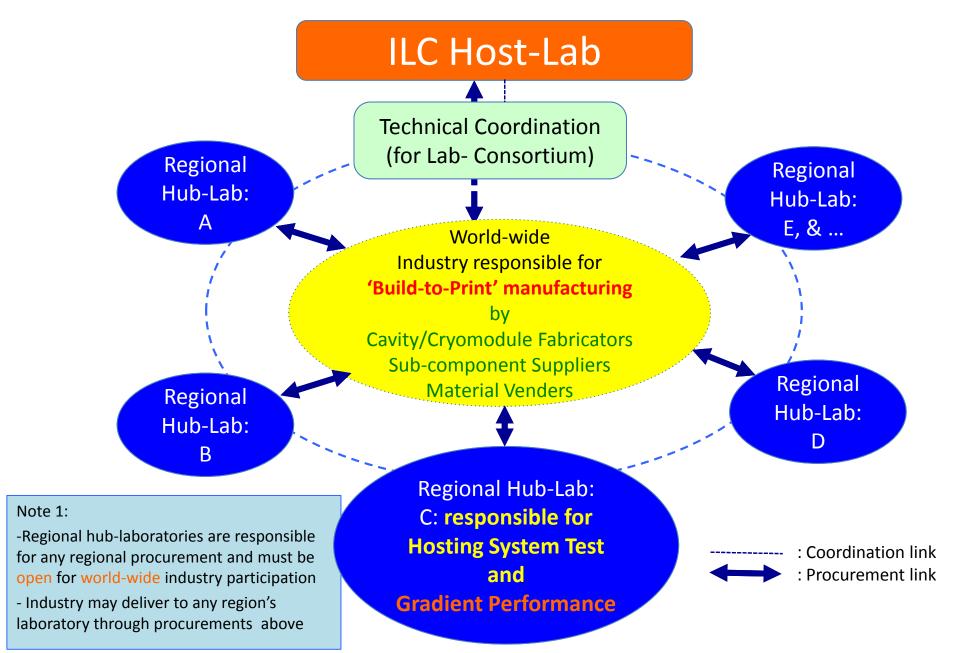


(2001 – conceptual)

D.Proch, LCWS 2007

Cavity welding: the general way There are differences of welding processes in industry

- 1. Degreasing and rinsing of parts
- 2. Drying under clean condition
- 3. Chemical etching at the welding area (Equator)
- 4. Careful and intensive rinsing with ultra pure water
- 5. Dry under clean conditions
- 6. Install parts to fixture under clean conditions
- 7. Install parts into electron beam (eb) welding chamber (no contamination on the weld area allowed)
- 8. Pump down to vacuum in the EBW chamber E-5 mbar
- 9. Welding and cool down of Nb to T< 150° C, venting
- '10. Leak check of weld



Conclusion: What can we learn from LHC magnet production for XFEL / ILC planning

- SC magnet and cavity fabrication is not (yet) of the shelf technology
 - Very tight supervision of companies is recommended
 - XFEL production will improve the situation, but can companies preserve this expertise until ILC construction?
- Cryostat assembly time (=cost) levels around 50 units
- QA on some components for ILC (e.g. Nb sheet scanning) might require automatic chains
- A pre-series production (after proto-typing) will establish the required expertise at companies for realistic bidding without too high risk margin.
 - A cooperative spirit should be established between scientific laboratories and production companies in early time

A Possible ILC-SCRF Industrialization Model

Niobium Superconducting Cavities 1.3 GHz 9-Cell ILC/TESLA

*Entry level niobium cavity delivered in 3 months (other options available).

Let us help you customize the exact niobium structure you need from 28 MHz to 3.9 GHz and beyond.

www.niowaveinc.com sales@niowaveinc.com 517.999.3475

Contact us to discuss your needs

SRF Technology Cost – 2011:

- semi-finished material: fabrication: surface etch & rinse
 - Roughly equal contribution → 1/3:1/3:1/3
- ITRP (2004): Superconducting technology:
 - "The construction of the superconducting XFEL free electron laser will provide prototypes and test many aspects of the linac.
 - The industrialization of most major components of the linac is underway.
 - **–** "

ILC TDP: (2.2)

SRF R & D

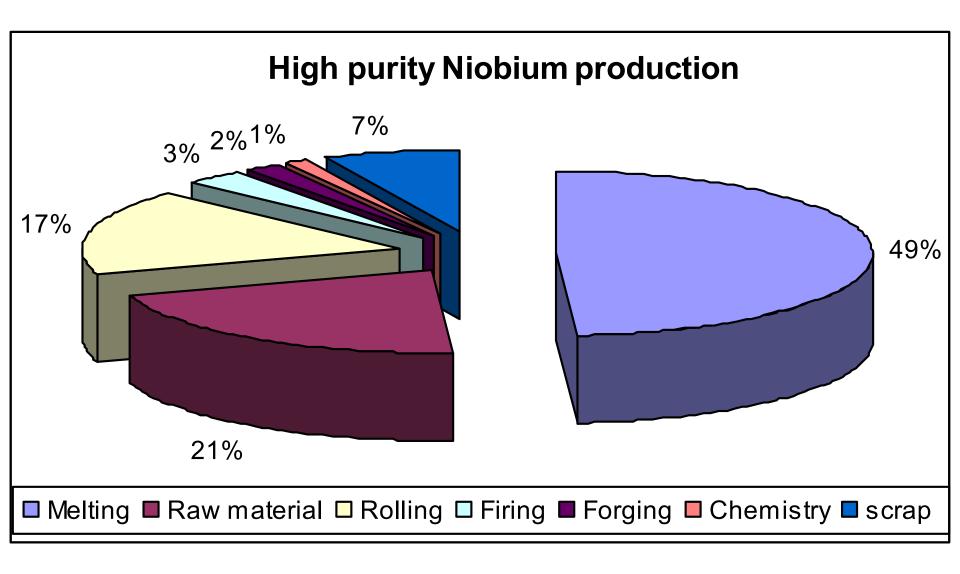
- SRF Mass Production and Cost
 - Pure Niobium semi-finished material
 - \$ and chemistry
 - Capacity and Constraints
 - Vendor seminar
- Beam Test Facilities
- Siting the ILC
- Path to the Energy Frontier

Material – ATR Nb from mine (BR)

Is raw niobium a cost driver?

- mixed oxides tantalum $\underline{\text{Ta}_2\text{O}_5}$ and niobium $\underline{\text{Nb}_2\text{O}_5}$ Ta_2O_5 + 14 HF \rightarrow 2 H₂[TaF₇] + 5 H₂O Nb_2O_5 + 10 HF \rightarrow 2 H₂[NbOF₅] + 3 H₂O

 - liquid extraction of the fluorides from <u>aqueous</u> solution by <u>organic solvents</u> like <u>cyclohexanone</u>
 or precipitated with <u>ammonia</u> as the pentoxide
- process involving the <u>AluminoThermic Reaction</u>
 (ATR) a mixture of <u>iron oxide</u> and niobium oxide is reacted with <u>aluminium</u>: $-3 \text{ Nb}_2\text{O}_5 + \text{Fe}_2\text{O}_3 + 12 \text{ Al} \rightarrow 6 \text{ Nb} + 2 \text{ Fe} + 6 \text{ Al}_2\text{O}_3$


 - (Wikipedia)

Comments to mass production / cost evaluation of high purity Niobium

- Nb Material (high purity, RRR 300)
 - No shortage of raw Nb material (40.000 tons annual production, ILC needs around 500 tons)
 - But limited number of high purity melting facilities
 - Today (2007) there are 4 qualified companies, but only one is capable of producing full yield for ILC
 - Marginal savings in mass production (from industrial study)
 - Size of melting furnace is limited
 - But some saving can be realized by
 - Disc rather than rectangular sheet (scrap can be recovered)
 - Other material produced ready for fabrication, e.g. flange material
 - Latest developments in large/single crystal cavities promise cost reductions, needs more experience / studies

8 kWh/kg/melt (mcr)

TESLA 2001-27 Kouptsidis (German)

Niobium Production at CBMM

- Niobium Ore in Araxa mine (open air pit) is pyrochlor with 2.5% Nb₂O₅
- The ore is crushed and magnetite is magnetically separated from the pyrochlor.
- By chemical processes the ore is concentrated in Nb contents (50 –60 % of Nb₂O₅)
- A mixture of Nb₂O₅ and aluminum powder is being reacted to reduce the oxide to Nb
- This Nb is the feedstock for the EBM processes

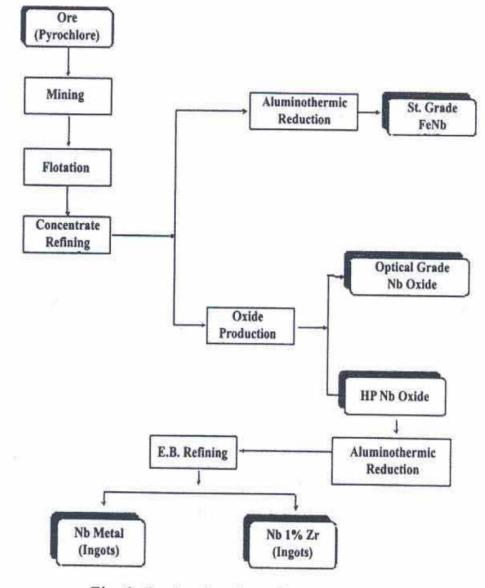
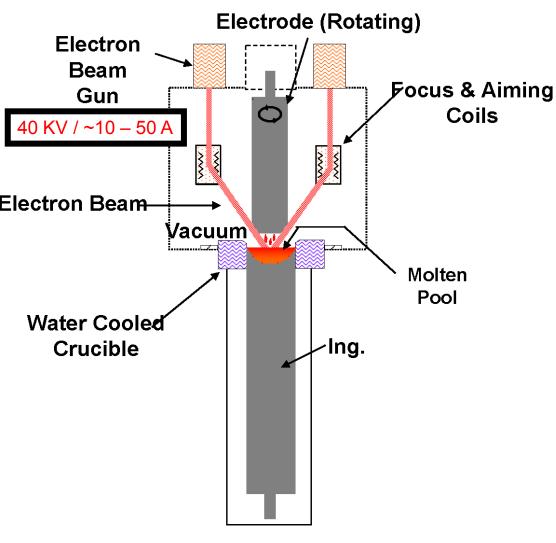
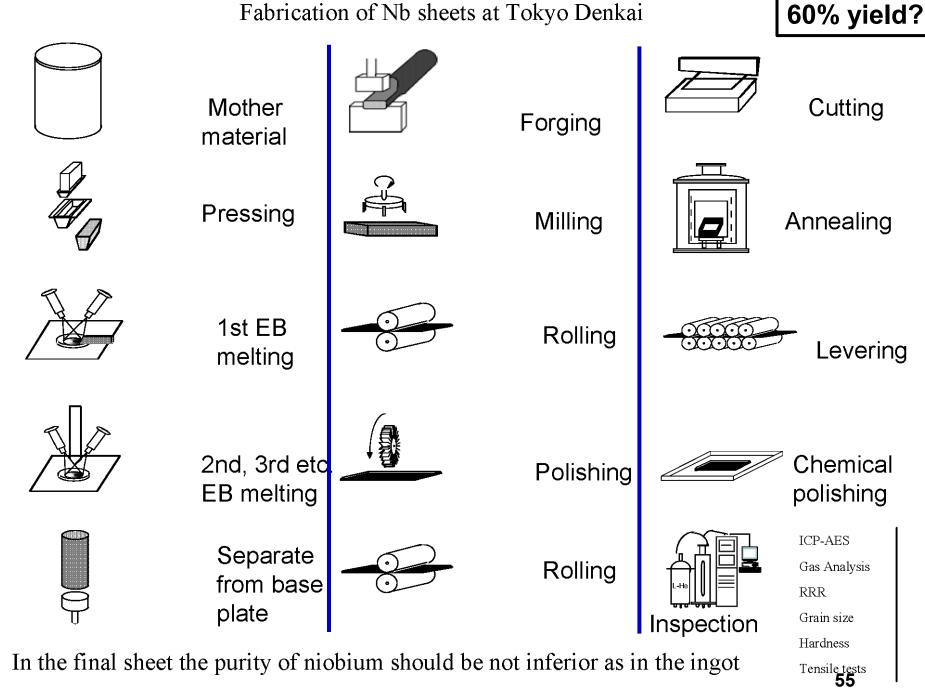



Fig. 3: Production flow chart at CBMM.

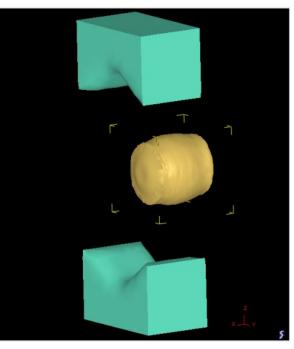
Electron Beam Melting

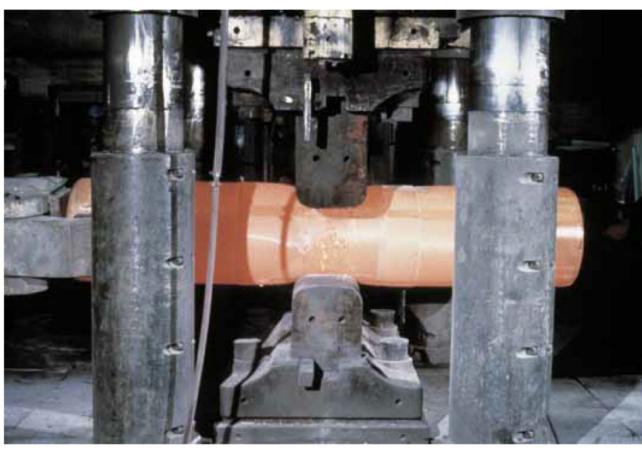
Electron beam melting of Nb


During of the ingot melts, molten metal globules fall into a pool on the ingot which is contained in a water cooled copper cylinder (sleeve). Impurities are evaporated and pumped away. Power impact is maintained to keep the pool molten out to within a few mm of the crucible wall. During melting the ingot formed is continuously withdrawn through the sleeve. The rate of withdrawal has to be carefully coordinated with the rate of the material to insure complete melting of the feed material and proper outgassing.

Electron Beam Melting

As a result of the increasing demand for refractory metals in the last few decades, the electron-beam furnace has been developed to a reliable, efficient apparatus for melting and purification.




W. Singer. Tutorial. 14th International Workshop on RF Superconductivity, September 20-25, 2009, Dresden, Germany

W. Singer. Tutorial. 14th International Workshop on RF Superconductivity, September 20-25, 2009, Dresden, Germany

Forging

2000 ton open die forge (Wah Chang)

Rolling

700 mm wide cold rolling mill (Wah Chang)

Hot rolling, used mainly to produce sheet metal is when industrial metal is passed or deformed between a set of work rolls and the temperature of the metal is generally above its recrystallization temperature.

Cold rolling takes place below recrystallization temperature.

Updated Plan for Visiting Vendor

	, - -			
•	Date	Company	Place	Technical sbject
1	2/8	Hitachi	Tokyo (JP)	Cavity & Cryomodule
2	2/8	Toshiba	Yokohana (JP)	Cavity & Cryomodule
3	2/9	MHI	Kobe (JP)	Cavity & Cryomodule
4	2/9	Tokyo Denkai	Tokyo (JP)	Nb, NbTi Material
5	2/18	OTIC	NingXia (CN)	Nb, NbTi, Ti Material
6	3/3	Zanon	INFN, Milano (IT)	Cavity & Cryomodule
7	3/4	RI	Koeln (DE)	Cavity & Cryomodule
12	4/27	Plansee	Ruette (AS)	Nb, NB-Ti Material
8	3/14, (4/8)	AES	LI, NY (US)	Cavitu & Cryomodule
9	3/15, (4/7)	Niowave	Lansing, MI (US)	Cavity & Cryomodule
10	4/6	PAVAC	Vancouver (CA)	Cavity & Cryomodule
11	4/25	ATI Wah-Chang	Albany, OR (US)	Nb, Nb-Ti material

GDE members: PMs, and RDs / Cost-experts / Experts from Lab (shared regionally)

ILC-GDE

Material

Niobium:

- Has high melting point 2500 degC
- Has strong acid resistance → 'refractory'
- Is difficult to machine
- (pure RRR Nb) is ductile and very difficult to grind
- Has affinity for oxygen
- Is a daughter metal to Tantalum

R & D post 2012

– Ta content?

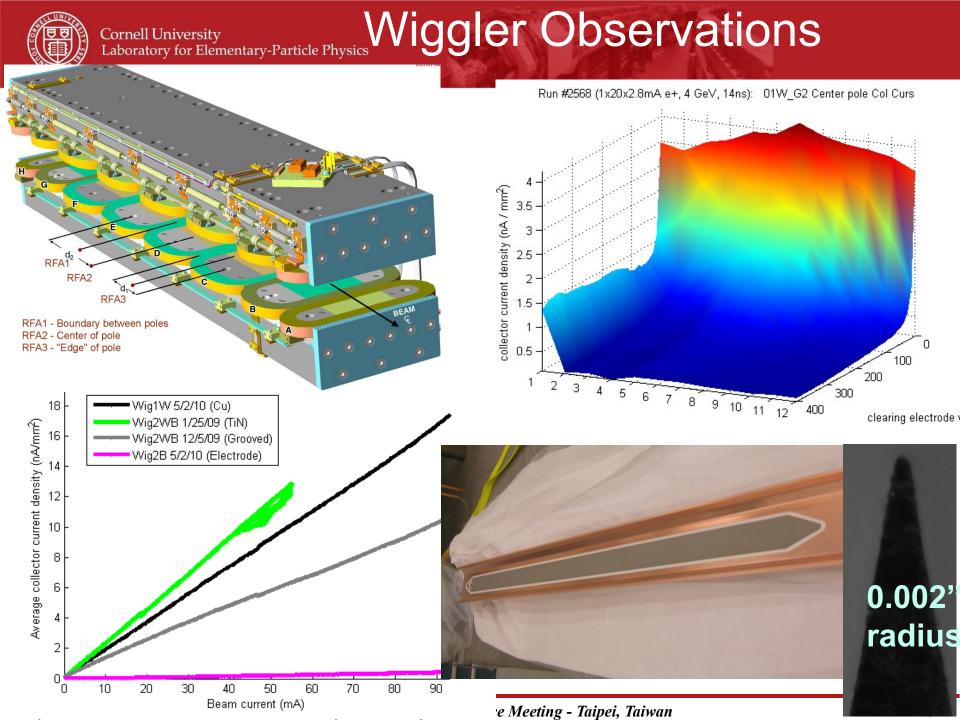
ILC TDP: (3)

- SRF R & D
- SRF Mass Production and Cost
- Beam Test Facilities
 - CesrTA: Recommendation delivered 2011
 - ATF2: Recovery
 - Nominal intensity / reasonable starting emittance
 - Alignment ongoing
- Siting the ILC
- Path to the Energy Frontier

Cornell University Laboratory for Elementary-Particle Physics	EC Mitigations				
	Drift	Quad	Dipole	Wiggler	VC Fab
Al	✓	✓	✓		CU, SLAC
Cu	✓			✓	CU, KEK, LBNL, SLAC
TiN on Al	✓	✓	✓		CU, SLAC
TiN on Cu	✓			✓, X	CU, KEK, LBNL, SLAC
Amorphous C on Al	✓				CERN, CU
NEG on SS	✓				CU
Diamond-like C on Al	√				CU, KEK
Solenoid Windings	✓				CU
Fins w/TiN on Al	✓				SLAC
Triangular Grooves on Cu				✓	CU, KEK, LBNL, SLAC
Triangular Grooves w/TiN on Al			√		CU, SLAC

✓ = chamber(s) deployed X = deployed in CESR Arc, Jan 2011 installed Jan 2011

Clearing Electrode


Triangular Grooves w/TiN on Cu

CU, KEK,

LBNL, SLAC

CU, KEK,

LBNL, SLAC

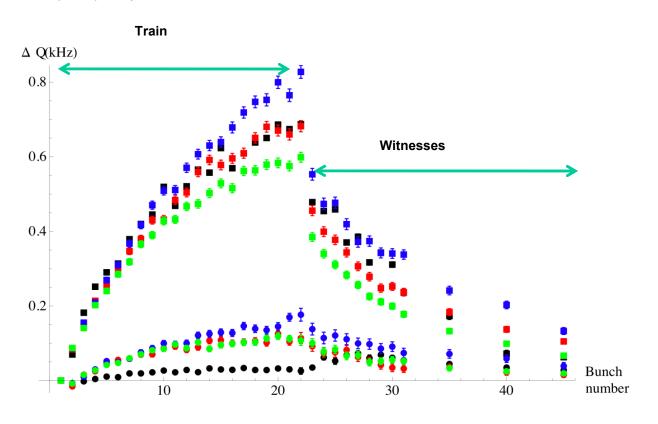
Mitigation Evaluation conducted at satellite meeting of ECLOUD`10 (October 13, 2010, Cornell University)

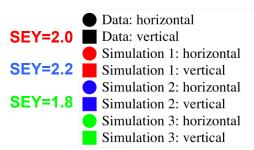
EC Working Group Baseline Mitigation Recommendation

	Drift*	Dipole	Wiggler	Quadrupole*
Baseline Mitigation I	TiN Coating	Grooves with TiN coating	Clearing Electrodes	TiN Coating
Baseline Mitigation II				
Alternate Mitigation	NEG Coating	TiN Coating	Grooves with TiN Coating	Clearing Electrodes or Grooves

- *Drift and Quadrupole chambers in arc and wiggler regions will incorporate antechambers
- Preliminary CESRTA results and simulations suggest the presence of sub-threshold emittance growth
 - Further investigation required
 - May require reduction in acceptable cloud density ⇒ reduction in safety margin
- An aggressive mitigation plan is required to obtain optimum performance from the
 3.2km positron damping ring and to pursue the high current option

S. Guiducci, M. Palmer, M. Pivi, J. Urakawa on behalf of the ILC DR Electron Cloud Working Group


Example: Positron Witness Bunch Study at 2GeV


Laboratory for Elementary-Particle Physics

Peak SEY Scan

Coherent Tune Shifts (1 kHz ~ 0.0025), vs. Bunch Number

- 21 bunch train, followed by 12 witness bunches
- 0.8×10¹⁰ particles/bunch
- 2 GeV.
- Data (black) compared to POSINST simulations.

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

(arb)

Signal

Cornell University Laboratory for Elementary-Particle Physics Induced Emittance Growth

200

150

100

are banen by banen beam eize

Beam size enhanced at head and tail of train Source of blow-up at head appears to be due to a long lifetime component of the cloud. Bunch lifetime of smallest bunches consistent with observed single bunch lifetimes during LET (Touschek-limited) and with relative bunch sizes.

data

Beam size measured around bunch 5 corresponds to $\varepsilon_{\rm v}$ ~ 20pm-rad $[\sigma_v = 11.0 \pm 0.2 \ \mu m, \ \beta_{source} = 5.8m]$

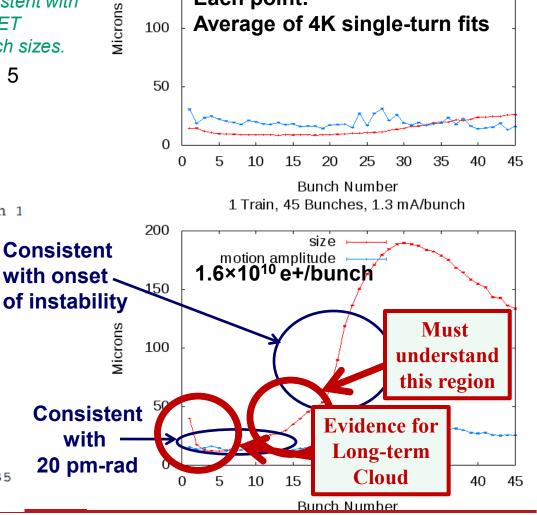
1 Train, 45 Bunches, 1.0 mA/bunch:

15

Pixel

20

25


30

Single Turn Fit

Bunch 5

5

10

1 Train, 45 Bunches, 0.5 mA/bunch

Average of 4K single-turn fits

motion amplitude

0.8×10¹⁰ e+/bunch,

Each point:

ILC TDP (4)

- SRF R & D
- SRF Mass Production and Cost
- Beam Test Facilities
- Siting the ILC
 - <u>Jump starting</u> a multi-dimensional process
 - SSC 'Site-Specific' Conceptual Design: 1000 pgs/18 months
 - Technology ←→ geology/topography
 - US / Japan studies
 - Tunnel configuration studies →
- Path to the Energy Frontier

Linac Configuration Study - US

	Α	В	С	D	E
				30М	30M
	DE	EP			NEAR S
	Twin Deep Tunnels	Single Deep Tunnel	Twin Near Surfce Tunnels	Near Surface Tunnel, At Surface Gallery	Single Near Surface Tunnel
EXCAVATION	TBM	твм	TMB TBM & OPEN CUT		TBM
No. of TUNNELS	TWO-TUNNEL	ONE-TUNNEL	TWO-TUNNEL	TWO-TUNNEL	ONE-TUNNEL
SHAFT SOIL	VARIES	VARIES	VARIES	VARIES	Soft/SURRY
TUNNEL SOIL	ROCK	ROCK	COHESIVE SOIL OR ROCK	COHESIVE SOIL - LOW PERMEABILITY	SATURATED SAND & GRAVEL
SERVICE SPACE	SECOND TUNNEL	SURFACE BUILDINGS	SECOND TUNNEL	CONTINOUS SERVICE GALLERY	AT CAMPUSES
ILC Technology	DISTRIBUTED RF	CLUSTERED RF	DISTRIBUTED RF	DISTRIBUTED RF	CLUSTERED RF
SIMILAIR TO	RDR SAMPLE SITES	RDR & CLIC	RDR	DUBNA ILC	XFEL
ACCESS	VERTICAL SHAFT	VERTICAL SHAFT	VERTICAL SHAFT	VERTICAL SHAFT	VERTICAL SHAFT

T. Lundin / T. Lackowski

F	G	Н	
JRFACE			
Enclosure in Open Cut, Cont. Gallery	Enclosure & Cont. Gallery in Open Cut	Enclosure in Open Cut	
OPEN CUT	OPEN CUT	OPEN CUT	
ONE-TUNNEL	TWO-TUNNEL	ONE-TUNNEL	
NA	NA	NA	
SOILS VARIES	SOILS VARIES	SOILS VARIES	
CONTINOUS SERVICE GALLERY	CONTINOUS SERVICE GALLERY	AT CAMPUSES	
DISTRIBUTED RF	DISTRIBUTED RF	CLUSTERED RF	
PROJECT X	PROJECT X		
HATCH	HATCH	HATCH	

2. Case Variations

Tunnel Configuration Study – KEK/J-Power

- HLRF difference
 - RDR
 - XFEL
 - KCS
 - DRFS

- Tunneling Method
 - TBM (circular section)
 - NATM (horseshoe section)

- Tunnel configuration
 - Double tunnel (RDR)
 - Single tunnel (TDR)
 - Japanese-type Singletunnel Accelerator Configuration

CASE No.	Name	No. of	Tunneling	HLRF	備考
		Tunnel			
CASE_1	D-T-R	2	TBM	RDR	
CASE_2	S-T-R	1	TBM	KDK	
CASE_3	JS-T-X	2	TBM	XFEL	Japanese type
CASE_4	JS-T-K	2	TBM	KCS	single-tunnel
CASE_5	JS-T-D	2	TBM	DRFS	accelerator
CASE_6	JS-N-D	2	NATM	DRFS	configuration
CASE_7	S-N-DR	1	NATM	DRFS/	Thin wall
CASE_8	S-N-DR	1	NATM	RDR	Thick wall

Site studies in Japan: Japan: international linear collider

Director's Corner

30 September 2010

Marc Ross

The ILC in a mountainous region – A report on Japanese efforts to develop possible sites

northern Honshu island"

Today's issue features a Director's Corner from Marc Ross, Project Manager for the Global Design Effort.

Roughly six years ago the International Committee for Future Accelerators accepted the recommendation to adopt 'cold', superconducting radiofrequency (RF) technology for the linear collider's main linac. The recommendation came shortly after an extensive review of the designs of the ILC's forerunner projects, TESLA, NLC and JLC. The main linac technology planned for the ILC, now under development in each region, is quite similar to that of the TESLA design.

Of course, the TESLA design included much more than a plan to deploy cold RF technology. In particular, the TESLA *Technical Design Report* included a conventional facilities design and a plan for a site in Germany located along a line stretching towards the northwest from DESY. In contrast to our adoption of cold RF technology, the conventional facilities design for TESLA was not adopted; a quite different design for the ILC has emerged and this has broad implications for several subsystems. The TESLA underground construction scheme was optimised to best suit a site in sandy, flat, water-logged ground with much of the underground construction below the water table, requiring appropriate design techniques.

In the Technical Design Phase, we now face a new challenge, namely how to make sure the ILC design is suitable for a variety of possible sites, including those similar to

"There is an encouraging possibility that Japan will

autumn meeting of the Physical Society of Japan

representatives of the Japanese ILC community

locations are at opposite ends of the Japanese

south of the city of Fukuoka in northwestern

100 kilometers north of the city of Sendai in

archipelago, one in the **Seburi-area**, 30 kilometers

Kyushu island, and the other in the Kitakami-area,

bid to host the ILC. Earlier this month, at the

held at the Kyushu Institute of Technology,

announced two potential ILC sites. The two

AAA-First Term Activety Report Supplemental Volume

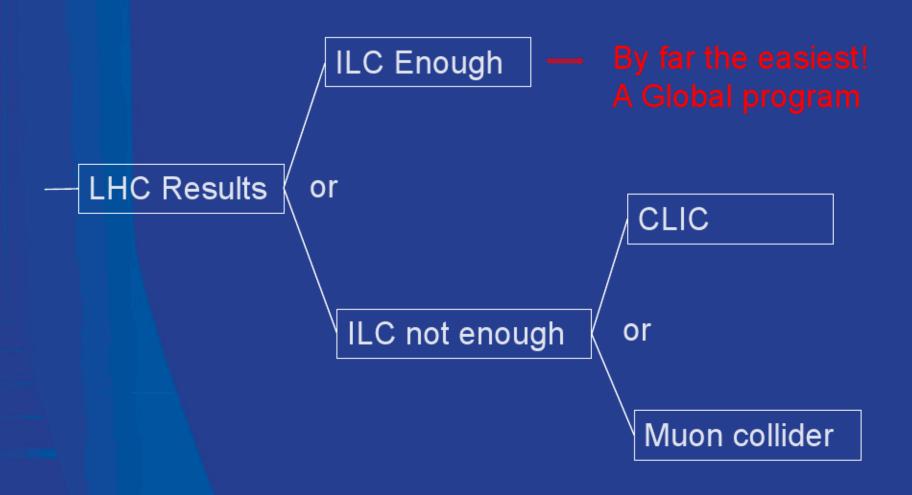
Industry consortium site study (AAA 2010)

Investigating the Single Tunnel Proposal in a Japanese Mountainous Site

ILC Newsline 23. June 2011

Tohoku-Oki recovery 11.03.11

Tohoku recovery logo says: "Let's get together towards Tohoku recovery." Image: Ministry of Land, Infrastructure and Transport



ILC TDP (5)

- SRF R & D:
- SRF Mass Production and Cost
- Beam Test Facilities
- Siting the ILC
- Path to the Energy Frontier
 - Position US to <u>regain the Frontier</u>...
 - Direction from LHC (2011/2012) what's next?
 - Normal conducting technology system test
 - Documenting the Technical Design Phase

Biggest decision of the decade!

1 TeV: Two Scenarios

Scenario 1: Consider 1 TeV as upgrade to initial 500 GeV machine

- current GDE approach for TDR
- based on original strategy set-out in 2005

Scenario 2: Consider >500 GeV (≤1 TeV) as initial machine

- consider as gedanken experiment
- flexibility in light of (emerging) LHC results

1 TeV Tentative Parameters

Collision rate	f_{rep}	4	Hz
Number of bunches	n_b	2625	
Bunch population	N_{-}	2	$\times 10^{10}$
Bunch seperation	Δt_b	356	ns
Pulse current	$I_{\it beam}$	9.0	mA
RMS bunch length	$\sigma_{\!\scriptscriptstyle z}$	0.3	mm
RMS energy spread (e-, e+)	$\Delta p/p$	0.105, 0.038	
Polarisation (e ⁻ , e ⁺)	<i>P</i> .	80, 22	%
Emittance (linac exit)	$\gamma \mathcal{E}_{x,y}$	10, 0.035	μm
IP beta function	$eta_{x,y}$ *	30, 0.3	mm
IP RMS beam size	$\sigma_{x,y}^*$	554, 3.3	nm
Vertical disruption parameter	D_y	19.2	
Luminosity	L	2.70	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
Fraction of luminosity in top 1%	$L_{0.01}/L$	63.5	%
Average energy loss	$\delta E_{ m BS}$	4.9	%
Number of pairs per bunch crossing	N_{pairs}	169	
Total pair energy per bunch crossing	$E_{\it pairs}$	1084	TeV

Current "official" parameter set in EDMS*.

Should still be considered <u>tentative</u>, pending <u>review</u> and <u>further study</u>.

Understanding (and updating) these parameters is our job for the next ~6 months.

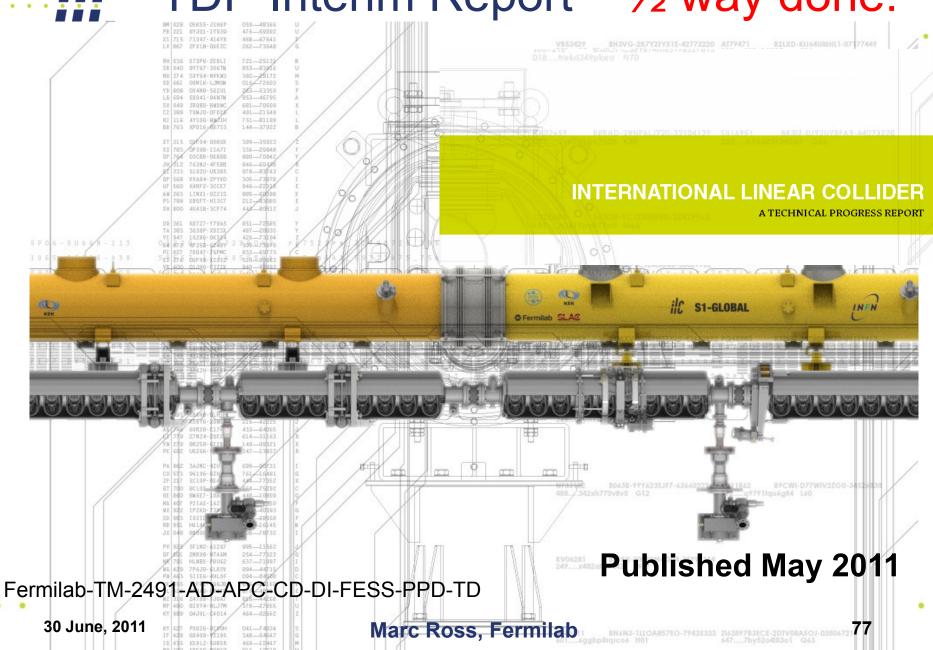
negotiation!

^{*} EDMS Doc ID: D*925325 http://ilc-edmsdirect.desy.de/ilc-edmsdirect/file.jsp?edmsid=*925325&fileClass=ExcelShtX

CLIC main parameters http://cdsweb.cern.ch/record/1132079?ln=fr http://clic-meeting.web.cern.ch/clic-meeting/clictable2007.html

Center-of-mass energy	CLIC	500 <i>G</i> eV	CLIC 3 TeV			
Beam parameters	Relaxed	Nominal	Relaxed	Nominal		
Accelerating structure	5	502	G			
Total (Peak 1%) luminosity	8.8(5.8)·10 ³³ 2.3(1.4)·10 ³		7.3(3.5)·10 ³³	5.9(2.0)·10 ³⁴		
Repetition rate (Hz)	50					
Loaded accel. gradient MV/m		80	100			
Main linac RF frequency GHz	12					
Bunch charge109	(5.8	3.72			
Bunch separation (ns)	0.5					
Beam pulse duration (ns)	1	.77	156			
Beam power/beam MWatts	4.9		14			
Hor./vert. norm. emitt($10^{-6}/10^{-9}$)	7.5/40	4.8/25	7.5/40	0.66/20		
Hor/Vert FF focusing (mm)	4/0.4	4 / 0.1	4/0.4	4 / 0.1		
Hor./vert. IP beam size (nm)	248 / 5.7	202 / 2.3	101/3.3	40 / 1		
Hadronic events/crossing at IP	0.07	0.19	0.28	2.7		
Coherent pairs at IP	10	100	2.5 10 ⁷	3.8 108		
BDS length (km)	1,87		2.75			
Total site length km	15.0		48.3			
Wall plug to beam transfert eff	7.5%		6.8%			
Total power consumption MW	129.4 241		415 508			

GDE - Technically-driven post 2012 program


THEME for post-2012 program

We are discussing possible major themes to guide this R&D development program. Examples including R&D toward a 1TeV, either directly or as an upgrade, emphasizing achieving higher gradient (energy) economically.

- •SCRF Systems tests; Mass production; Value Engineering, etc.
- Design evolution: 1 TeV; Positrons; R&D toward major technical advances
- Must preserve GDE-like global decision making and coordination in new pre-project organization

TDP Interim Report – ½ way done:

ILC Technical Design Phase:

- RDR (2005-2007)
 - had strong SLAC leadership
- TDP R & D (2008 2012)
 - Akira Yamamoto,
 - Jim Kerby, Tetsuo Shidara,
 - KEK, INFN, JLab and Fermilab team
- Accelerator Design (2000 2012)
 - Nick Walker and Accelerator System team
 - CFS: Vic Kuchler, Atsushi Enomoto, John Osborne