Integration / MDI Status and Plan

T. Tauchi, ILC Tokushin Kickoff Meeting, 12 September 2011

2011年9月10日土曜日

Specific Issues in Tokushin on Detector Integration for 2011 - 2015

1. Assembling procedure of the detector in the experimental hall by transporting divided coils of large detector solenoid

2. Alignment system for heavy components

3. Detector moving system with connecting signal cables and cryogenic pipes in the push pull operation

Recent Activities

ILC Experimental Hall, especially in Japan

Mountain site, e.g. assembling, access, vibration etc. : the engineering specifications for Japanese site

ILD : MDI/Integration meetings (Webex) 22 May, 2011 ILD MDI/Integration Pre-meeting (ILD WS)

with participation from SiD, CFS groups and ARUP

MDI-CTG/BDS Meetings (Webex)

21 June,2011 : Discussion on the ARUP document on the LC study task 1 and 2
25-26 July,2011 : CFS Technical Workshop, intermediate review of ARUP work
15 August,2011 : Report of the CFS technical WS, plan at LCWS2011
15 September,2011 : webex meeting with CFS on experimental hall etc.
26 -30 September, 2011 : LCWS2011
24 -28 October, 2011 : TDR Technical Baseline Review meeting of BDS/MDI

For DBD/TDR : Design Study for the Interaction Region; Push-Pull System for the ILC by the MDI-CTG + A.Seryi (BDS) , July 2010

Tasks (Work Plan)

The following list summarizes the major tasks of the working plan.

- 1. Design of the detector motion system; study of its vibration properties in simulation and experiment.
- 2. Design of the IR underground hall for push-pull, including facilities and services for the operation of the detectors, radiation shields, seismic issues, impact of safety rules.
- Optimization of the detector integration and its impact on assembly procedures, magnetic and radiation shielding, vibration sources.
- 4. Design of detector services supplies for push-pull (data and HV cables, cryogenics).
- 5. Design and prototype of the final doublet quadrupoles and verification of their stability.
- 6. Design of alignment system for the final doublet magnets and the inner detector components, including the design of a laser interferometer system.
- 7. Study on IR vacuum design, including vacuum requirements and design of quick connection valves.
- 8. Study of intra-train feedback systems in a push-pull system.

Ours	
(KEK)	

Work Plan Diagram

Task Name	201	0		2011			2012			2013
	Q1	Q2	Q3 Q	4 Q1	Q2	Q3 Q4	Q1	Q2 Q3	Q4	Q1 Q2
Push-Pull Design Study		0	-							
T0: Finalisation of Work Plan done										
Work Plan Evaluation										
Push-Pull Work Plan			•							
T1: Detector Motion System FNAL										
Motion System Studies (incl. Vibrations) CERN -	A RU	Ρ			t,					
Decision on Motion System (Platform or not) ETH				_	•_					
Detector Motion System Design SLAC							:			
T2: IR Hall Design										
Civil Facilites and Services DESY				:			:		1	
Radiation Shields KEK				: .			:]		
Seismic Studies JINR				: .			:			
Interface to Extraction Beam Lines and Beam Dump BARC				:			:			
Impact of Safety Rules				:			:]		
T3: Detector Integration and Assembly LAL, LLRL					+					
Assembly Procedure Study KEK							:			
Detector Integration				:			:			
Magnetic and Radiation Shielding							:			
T4: Detector Services with SiD also CLIC					+					
Movable Services (Cryo, Cables)										
T5: Final Doublet Design and Prototyping BNL									1	
Vibrational Stability Studies				:			1			
Magnet Integration Design										
T6: Alignment Procedures JAT (Wonalisa) ?			ľ.							
Alignment System for FD and Inner Detector				:			1			
Laser Interferometer System										
T7: Vacuum Design LAL							1	•		
Vacuum Requirements CI&ASTEC										
Connection Valves Design										
T8: Feedback System JAI (FONT)										
Design of Feedback System for Push-pull environment							1		1	
IR Engineering Specifications Oratt by MDI-CIG	_								되	
Preparation of TDR/DBD									4	-
IDR/DBD Editing										
ILC Milestones										
Technical Design Phase 2										il i
CERN Workshop			•							
Oregon Workshop				-	•					-
TDR/DBD Publication			13						-	

RDR Experimental Hall Design

Experimental Hall Design in ILD-LOI

FIGURE 6.3-4. Design study of the underground experiment hall with ILD (left) and the second detector in push-pull configuration.

CERN Linear Collider Study Task 1 and 2 Technical Basis for Study

to be completed by LCWS2011

Page

REP/Basis/216967/MJS/260511

Rev 1 | June 2011

Introdu	etion		1
Task 1 V	Vork Plan	sponsor :FNAL	2
2.1	Structural Design Basis		2
2.2	Platform Design Develo	pment	2
2.3	Transport System		2
2.4	Geotechnical input		3
2.5	Scheme Design		4
Task 2 V	Vork Plan	sponsor :CERN	5
Design B	Basis for Study		6
4.1	Task 1 – Movement Plat	tform	1
4.2	Task 2 – Cavern Study		4
	Introdue Task 1 V 2.1 2.2 2.3 2.4 2.5 Task 2 V Design H 4.1 4.2	IntroductionTask 1 Work Plan2.1Structural Design Basis2.2Platform Design Develor2.3Transport System2.4Geotechnical input2.5Scheme DesignTask 2 Work PlanDesign Basis for Study4.1Task 1 – Movement Plan4.2Task 2 – Cavern Study	IntroductionTask 1 Work Plansponsor :FNAL2.1Structural Design Basis2.2Platform Design Development2.3Transport System2.4Geotechnical input2.5Scheme DesignTask 2 Work Plansponsor :CERNOpesign Basis for Study4.1Task 1 – Movement Platform4.2Task 2 – Cavern Study

CFS technical workshop is planned for 25/26 July in London, to check on the design progress. Participants are J.Osborne, A.Gaddi , M.Gastal , A.Herve (ILD) , V.Kuchler , T.Lackowski, M.Oriunno (SiD), K.Sinram (ILD) ...

Layout 5

#	Requirement	Layout	1 Layout	2 Layout	3 Layout	4 Layout 5
1	Surface assembly of Magnet	1	4	3	3	4
2	Underground installation of Tracker, Calorimeters and Forwards	1	4	2	2	4
3	Number and Size of Cranes	3	3	3	2	4
4	Costs: Shafts and Halls size	4	2	2	2	3
5	Infrastructures	NA	NA	NA	NA	NA
6	Easy Maintenance, Smooth Operation	2	4	3	2	4
7	Beam Commissioning	1	1	1	4	4
8	Safety	2	4	2	2	4
	Final Score	14	22	16	17	27

Rating Scale 1÷5 : 1=Low, 5=High

M.Oriunno (SiD),25-26 July, 2011, ARUP meeting

M.Oriunno (SiD),25-26 July, 2011, ARUP meeting

Tom Lackowski (FNAL), MDI-CFS webex meeting

An example of Asian mountain site

Y. Sugimoto, IWLC10, CERN/CICG, 8 Oct.2010

Y. Sugimoto, IWLC10, CERN/CICG, 8 Oct.2010

Major Issues : ILD - MDI

1. Beam Level from top of the platform

9m of ILD v.s. 7.4m of SiD, however recently 9m of SiD at ALCPG11

2. Iron Yoke : number of layers, thickness

Residual magnetic field - 50 Gauss on the beamline and the 2nd garage Muon identification and pion rejection: 95% and 99% for P>4GeV, respectively Tail catcher for HCAL, also coil instrumentation?

- 3. Split the endcap w/o opening at IP to be decided necessity, e.g. assembly, and engineering difficulty
- 4. Optimization of experimental hall

smaller size, assembling the detector crane capacity, alcoves and facilities for detector services

5. Integration of sub-detectors

complete the baseline design with insensitive zones as realistic models especially for the inner region, beam pipes, SIT, FTD etc. a realistic simulation model

6. Push pull operation with the Platform

Draft of "engineering specifications", 12 September 2011

Engineering Specifications (1) : Push Pull Issues	unit	value	SiD	ILD
Time for Exchange experiments with rough alignment (mm)	day	1		
Time for Fine alignement, vacuum evacuation	day	1		
Time for Restart the machine and experiment	day	1		
Time for Beam calibration and alignment for the nominal luminosity	day	1		
Number of Pushpull operation	/year	10		10
Number of Pushpull operation for 15 years	times	150	100	150
Detector total weight	tons	15,000	10,000	15,500
Detector beam level	m	9	9	9
Maximum acceleration on the detectors during the movement	G	0.5	0.0001	
Total moving distance from IP to the garage position	m	15		25
Residual magnetic field at IP from detector in the garage	Gauss	50		50
Pulling forces with two lines (multiple anchoring points?)	tons/line	300		
Number of anchoring points		4		
Movement speed	cm/min	10	6 to 30	
Displacement due to the movement : radius	mm	20		
Displacement due to the movement : angle	mrad	2.5		
Adjustment of the movement : x,y	(\pm) mm	1		
Adjustment of the movement : angle	mrad	0.1		
Slow downward movement of the floor within ± 50 m around IP (for several	122.122	5		
weeks?) with feedback system	111111	5		
Platform : width	m		20	14
Platform : length	m		20	14.8
Platform : thickness	m			2.2
Platform : wall clearance	mm		10	
Platform : max. vibration transfer function for microseisms	1 <f<100hz< td=""><td></td><td>1.5</td><td></td></f<100hz<>		1.5	
Platform : pulling force in locomotion system with rollers	tons	750	500	750
Platform : pulling force in locomotion system with airpads	tons	300		300
Roller : a roller system must be supplemented by another system that allows a	3-axis movement	nt on IP. A goo	od candidate v	would be a
grease-pad system on top of the roller supporting platform.				
Airpad : Standard airpad systems have the disadvantage of requiring a slight lit	t of the load of	around 5 mm	. However as	the landing
is obtained by leaking air through orifices this landing is very smooth as it had	been verified by	y installing ac	celerometers	on CMS
elements.		_		
hydraulic jacks :				

Draft of "engineering specifications", 12 September 2011

Engineering Specifications (2) : Experimetnal Hall	RDR	SiD	ILD	ILD in Mtn. site			
Parameters that define the underground hall volume							
IR Hall Area(m); (W x L)	25x120			25x100			
Beam height above IR hall floor (m)	8.6	9(7.5)	8(9)	9			
IR Hall Crane Maximum Hook Height Needed(m)	20.5	5m above top of detector	20.5	20.5			
Largest Item to Lift in IR Hall (weight and dimensions)	400t	380t(HCAL)	55t, 3x3x1.5m	400t			
IR Hall Crane	400t+2*20t	400t(200tx2)/10t	80t(40tx2)	(200t+20t)x2			
IR Hall Crane Clearance Above Hook to the roof (m)	14.5(includes arch)		6	12.5			
Survice caverns(m); (W x L xH)	none		15x25x11	15x25x11			
Resulted total size of the collider hall (W x L x H)	25x120x39	20.2x90x30	29x100x30	25x100x33			
Area at garage position		19x 55.5	w/ side access tunnel	with side cavern			
Parameters that define dime	ensions of the IR hall	shaft and the shaft crai	ne				
Largest Item; Heaviest item to Lower Through IR Shaft (weight and dimensions)	9x16m, 2000t	2500t	3500t, 15.7x7.81m	-			
IR Shaft Size : diameter(m)	16	18	18	-			
IR shaft fixed surface gantry crane. If rented, duration	1.5 years	1.5 years	1.5 years	-			
Surface hall crane should serve IR shaft	Yes	Yes	Yes	-			
Other shafts near IR hall for access	No	Yes	No	-			
Elevator and stares in collider hall shaft	Yes	?	Yes				
Size of access tunnel at Mtn. site (W x H, m)	-	-	-	11x11, 10.2x8.0			
Parameters that define dimensions of the surface assembly building and its crane							
Surface Assembly Building Area ((W x L, m)	25 x 100 / detector		30x60	27x100 / detector			
Largest Item to Lift in SurfAsm. Bldg. (weight and dimensions)	400t	380t(HCAL)	180t	400t, 8.6 φ x8			
Surface Assembly Crane	400t+2*20t	400t(200tx2)/10t	2x80t	(200t+20t)x2			
SurfAsm. Crane Maximum Hook Height Needed(m)	18	20	19	20.5			
SurfAsm. Crane Clearance Above Hook to the roof (m)	7		5m to ceiling	6.5			
Resulted volume of surface assembly building (W x L x H, m)	25 x 100 x 25		30x60x24	27x200x27			
Parameters that define cran	ne access area and cl	learance around detecto)r				
SurfAsm. crane accessible area (needed) / available (W x L, m)	20 x 102		28x56				
IR hall crane accessible area (needed) / available (W x L, m)	22 x 98		28x41	18x98			
Maximum Detector Height(m)		16.15	15.74	15.74			
Detector Width (m)		18.53(14.334)	15.665	15.665			
Minimum Detector Clearance (W x L x H, m)			15.67x13.26x15.74	15.67x13.26x15.74			
FILL IN OTHER IMPORT	ANT PARAMETERS	WHICH ARE MISSING	, ,				
Maximum AC power (MW)	-						
Temerature control (°C)	-						
Humidity control (%)	-						
Sump Pump Control System (ground water)	-						
Cryogenics system : 4K He liquefier and large dewar	-	same level as the coil	service cavern	service cavern			
Dump registor	-	on the detector		service cavern			

area is t

Draft of "engineering specifications", 12 September 2011

Engineering Specifications (3) : QD0 Issues	unit	value	
Mover : number of degrees of freedom		5	horizontal x, vertical y, pitch !, yaw ", roll #
Mover : Range per x,y degree of freedom	mm	± 2	
Mover : Range per !, " degree of freedom	mrad	± 1	
Mover : Range per # degree of freedom	mrad	± 30	
Mover : Step size per degree of freedom of motion	μm	± 0.05	
Before BBA : Accuracy per x,y degree of freedom	μm	± 50	
Before BBA : Accuracy per !, " degree of freedom	μrad	± 20	
Before BBA : Accuracy per # degree of freedom	mrad	± 20	
BBA : alignment accuracy per x,y	nm	± 200	from a line determined by QF1s for 200ms
BBA : Accuracy per # degree of freedom	μrad	± 0.1	from a line determined by QF1s for 200ms
Vibration stability : $(QD0(e^+)-QD0(e^-))$	nm	50	within 1ms long bunch train

Engineering Specifications (4) : Radiation shield	unit	value	
Self shielding		must	
Normal operation : anywhere beyond the 15m zone housing the off-beamline detector	μSv/hour	0.5	
Accidental beam loss : dose for occupational workers	mSv/hour	250	The acident is defined as the simultaneous loss of
Accidental beam loss : integrated doze for occupational workers	mSv/accident	1	both e^+ and e^- beams at 250 GeV/beam
Accidental beam loss : beam shut-off time after the accident	beam-train	1	anywhere, at maximum beam power.

Engineering Specifications (5) : Vacuum	unit	value	
in the 200m upstream of the IP	nTorr	1	$=1.3 \times 10^{-7} \text{ Pa}$
in the remainder of the BDS system	nTorr	10	$=1.3 \times 10^{-6} \text{ Pa}$
in the 18m zone of the detector			not specified in the IR document

Work plan for DBD/TDR and Tokushin

1. Detector solenoid

Y. Makida, Solenoid/cryogenics design/R&D in synergy with CLIC, JPARC
 M. Kawai, 3D Field calculation with anti-DID

2. Integration Y. Sugimoto, Experimental hall in the mountain sites H. Yamaoka, QDO support system and detector integration/ assembling in the mountain sites

- Y. Suetsugu, Beam pipe design, vacuum system
- T. Sanami, Self-shielding evaluation PACMAN design

3. Push pull

H. Yamaoka, Moving system with alignment, and stability issues

T. Tauchi, Operational time (general issues)