Study of the Higgs Selfcoupling at the ILC

Junping Tian (KEK) JSPS Kickoff Meeting Sep. 12, 2011

outline

- introduction
- current ZHH analysis based on full simulation
- prospects for the Higgs self-coupling measurement with different Higgs masses
- plans for the future improvement towards DBD

motivation of Higgs self-coupling measurement

Higgs Potential:
$$V(\eta_H) = \frac{1}{2}m_H^2\eta_H^2 + \lambda v\eta_H^3 + \frac{1}{4}\lambda \eta_H^4$$

usical Higgs field mass term trilinear coupling M : $\lambda = \lambda_{SM} = \frac{m_H^2}{2v^2}$ $v \sim 246$ GeV V $V \sim 246$ GeV V $V \sim V$

- just the force that makes the Higgs boson condense in the vacuum (a new force, non-gauge interaction).
- direct determination of the Higgs potential.

ph

- accurate test of this coupling may reveal the extended nature of Higgs sector, like THDM and SUSY.
- difficult to measure at LHC for a light Higgs.

Higgs self-coupling as a probe of new physics

Two Higgs Doublet Model (THDM) $M_h = 120 \text{GeV}$ $M_H = M_A = M_{H^{\pm}} = M_{\Phi}$ **Chiral Fourth Generation (Ch4)**

 $M_h = 120 \text{GeV}$ t' is the fourth up-type quark

effects on the cross section of Zhh could be O(100%) deviation from the SM value

Phys.Rev. D82 (2010) 115002

Higgs self-coupling measurement at LHC

for a low mass Higgs: M(H) < 140 GeV

 $p + p \rightarrow HH \rightarrow bbbb$ (dominant)

QCD 4b background solid: dashed: SM signal dotted and dotted-dashed: signal with different Higgs self-coupling

two orders overwhelmed by QCD 4b background!

Phys.Rev. D68 (2003) 033001

Measurement of the trilinear Higgs self-coupling @ ILC

• double Higgs-strahlung (dominate at lower energy)

• WW fusion (become important at higher energy)

extraction of Higgs self-coupling from the cross section of ZHH

effect of irreducible diagram

extraction of Higgs self-coupling from the cross section of vvHH

effect of irreducible diagram

$$\sigma = a\lambda^2 + b\lambda + c$$

$$\sigma(e^+e^- \rightarrow \nu\bar{\nu}HH)$$

Previous studies of Higgs self-coupling at a linear collider

- most of the studies are based on fast simulation.
- ZHH@500GeV based on fast simulation suggests precision of 18% on the Higgs self-coupling with 2 ab⁻¹ (arXiv:hep-ex/0101028v1)
- ZHH@500GeV based on full simulation, which only included one search mode, gives precision of 160% with 2 ab⁻¹ (arXiv:hep-ex/0901.4895v1)
- vvHH@1TeV based on fast simulation suggests precision of about 10% with 1 ab⁻¹ (Yamashita@LCWS04)

No complete investigation of all search mode based on full simulation, and no real demonstration of the feasibility of Higgs self-coupling measurement! status of current analysis

@ALCPG11

- focus on the ZHH @ 500 GeV, M(H) = 120 GeV.
- three decay modes of ZHH (Z-->ll, vv, qq, H-->bb) are investigated, based on full simulation.
- neural-net methods are used to improve the background suppression.
- effects of different beam polarizations are checked.
- precisions of cross section and self-coupling are given by combining all decay modes.

P(e-,e+)=(-0.8,0.3)	e^{+} -	$+ e^- \rightarrow ZH$		H) = 120 GeV	$\int Ldt = 2ab^{-1}$
Energy (GeV)	Modes	signal	background	significance	
				excess (I)	measurement (II)
500	$ZHH ightarrow (lar{l})(bar{b})(bar{b})$	6.4	6.7	2.1σ	1.7σ
500	$ZHH ightarrow (u ar{ u}) (b ar{b}) (b ar{b})$	5.2	7.0	1.7σ	1.4σ
500	ZHH ightarrow (qar q) (bar b) (bar b)	8.5	11.7	2.2σ	1.9σ
		16.6	129	1.4σ	1.3σ

remained signal and background events full simulation @ 500GeV

Polarization: (e-,e+)=(-0.8,0.3) $\int Ldt = 2ab^{-1}$ M(H) = 120 GeV

	llHH	vvHH	qqHH (i)	qqHH (ii)
Signal	6.4	5.2	8.5	16.6
BG	6.7	7.0	11.7	129
ZZZ	1.2	0.6	2.1	6.7
ZZH	4.3	1.5	2.7	7.6
tt, ttqq	-	3.3	5.2	105
llbb, bbbb	1.2	1.6	1.3	9.1

hypothesis test (combined significance)

H0: background only

H1: ZHH events exist

test:
$$\chi^2 = -2\ln\frac{L_{s+b}}{L_b}$$

$$L_{s+b} = \prod_{i} \frac{e^{-(s_i+b_i)}(s_i+b_i)^{n_i}}{n_i!}$$

Distributions of the test

 $L_b = \prod_i \frac{e^{-b_i} b_i^{n_i}}{n_i!}$ s_i: the expected number of signal events b_i: the expected number of background events n_i: the observed number of events

$$p = \int_{-\infty}^{\chi_{obv}^{2}} f(\chi^{2}) d\chi^{2}$$

= 4.6 × 10⁻⁵

combined significance of ZHH excess: 3.9σ

extracting the cross section of ZHH

$$L_{s+b} = \prod_{i} \frac{e^{-(s_i+b_i)}(s_i+b_i)^{n_i}}{n_i!}$$

b_i: expected background number (known from MC) n_i: number of observed events (known from Experiment) si: parameter related with the cross section

$$s_{i} = (\sigma_{ZHH} + \sigma_{i}) \cdot \text{Lumi} \cdot \text{Br}_{i} \cdot \text{Eff}_{i}$$

$$\chi^{2} = -2ln \frac{L}{L_{max}}$$
(negligible at 500 GeV)

 $\sigma_{ZHH} \cdot \text{Lumi} = 448^{+145}_{-137}$ $\sigma_{ZHH} = 0.22 \pm 0.07$ fb

precision of cross section: 32% precision of Higgs self-coupling: 57%

recalling $\frac{\Delta\lambda}{\lambda} = 1.8 \frac{\Delta\sigma}{\sigma}$

13

500 GeV)

prospects for different Higgs masses

sensitivity of Higgs self-coupling (generator level and without backgound)

Higgs masses of 120, 125, 130, 135 and 140 GeV are investigated.

consistent with previous theoretical result

extrapolate results for higher Higgs mass

- assume the signal efficiency unchanged.
- shift the cuts for two Higgs invariant masses to estimate the efficiency drop of the Higgs mass sensitive backgrounds, such as ZZZ, ZZH, Ilbb.
- keep the t-tbar efficiency unchanged.

extrapolate: precision of the cross section

M(H) (GeV)	120	125	130	135	140
precision	32%	40%	53%	87%	138%
	18%	20%	29 %	47%	69 %

H-->WW* should be included!

plans for the future improvement towards DBD

future improvements

jet clustering

vertex-based, optimized for b-tagging

• b-tagging

based on new jet-clustering

neural-net tuning

• jet pairing

kinematical, kinematic fitting

dynamical? charge?

• lepton ID

tt-bar suppression

ZZZ, ZZH suppression

llbb, bbbb suppression 19

jet clustering

(T. Suehara)

- Vertex Finder --> Jet Cluster --> Flavor Tagger.
- tracks from one B-hadron will not be clustered to different jets

applied to tt-bar suppression

ongoing

flavor tagging (LCFIVetex) (T. Tanabe)

- new framework with TMVA, easier to modify
- optimization of input variables.

improvements

- improvements attempts have already begun by incorporating new variables
 - currently incorporate the vertex ordering information (vertex distance and vertex momentum direction)
 - already see improvement in the high signal efficiency region
- will incorporate other variables & optimize at higher

ongoing

jet pairing

(J. Tian & K. Fujii)

- likelihood pairing algorithm.
- kernel function can well estimate the shape of the invariant mass spectrum

lepton identification

(J. Tian & K. Fujii)

- previously only P, E(Ecal), E(Hcal) and E(cone) used. more information (dE/dx? shower profile?)
- Fisher Classification used for isolation requirement.

further analyses

• 1 TeV full simulation

• alternative Higgs mass (real analysis)

task force for Higgs self-coupling analysis

- currently 4 members: T. Suehara, T. Tanabe, J. Tian and K. Fujii
- chaired by T. Suehara, supervised by K. Fujii
- biweekly meeting
- anyone interested is invited

summary

- an analysis of ZHH @ 500 GeV based on current technology is completed: the first full simulation study with three decay modes.
- effects of higher Higgs masses are investigated: challenge for analysis tools and other decay modes of Higgs should be considered.
- a task force for Higgs self-coupling analysis is formed to work on the improvements.

backup

remained S & B for different Higgs masses

(with cross section drop and branching ratio drop)

		llHH	vvHH	qqHH (i)	qqHH (ii)		
M(H)=125 GeV	Signal	4.5	3.6	6.0	11.6		
	BG	4.7	6.0	9.7	123		
M(H)=130 GeV	Signal	2.9	2.3	3.8	7.4		
	BG	3.2	5.4	8.4	119		
M(H)-135 CeV	Signal	2.9	2.3	3.8	7.4		
WI(II)=100 CC V	BG	5.6	4.5	7.1	113		
M(H)-140 CoV	Signal	0.9	0.7	1.1	2.2		
WI(II)-140 Gev	BG	1.0	4.0	6.3	110		

combined significance of ZHH excess

Polarization: (e-,e+)=(-0.8,0.3) $\int Ldt = 2ab^{-1}$

M(H) GeV	120	125	130	135	140
significance	3.9σ	3.4σ	2.2σ	1.4σ	1.0σ
	8.4σ	7.5σ	4.7σ	2.6 σ	1.9σ

results for the case we can double the signal efficiency with the future improvement

effects on the cross section of ZHH and branching ration of H-->bb

Higgs masses of 125, 130, 135 and 140 GeV are investigated.

For 140 GeV Higgs, σ(ZHH-->Zbbbb) will be only 13% of that for 120 GeV

precision of the self-coupling

effects of irreducible Feynman diagrams

M(H) (GeV)	120	125	130	135	140
Factor	1.80	1.74	1.68	1.63	1.59
	57%	70%	89%	142%	219%
precision	32%	35%	49%	77%	110%