Physics and Optimization

Tomohiko Tanabe ILC Tokubetsu Suishin Kickoff Meeting @ Sendai September 12, 2011

topics

- Introduction
- activities of ILC Asia Physics Working Group
 - Higgs studies
 - BSM studies
- benchmark processes for DBD

(will not talk about plans beyond 2012...)

Standard Model

has many free parameters

• α, α_s, G_F

• mz, mH

• m_t , m_b , m_c , m_s , m_d , m_u , m_T , m_μ , m_e

• θ₁₂, θ₂₃, θ₃₁, δ

(neutrino masses & mixing parameters)

verification of SM

= over-constraining of the SM parameters

= many different measurements of the same parameters

 α, α_s, G_F precision electroweak measurements
m_Z, m_H (SLC, LEP, Tevatron, LHC, ...)

• $m_t, m_b, m_c, m_s, m_d, m_u, m_\tau, m_\mu, m_e$

• $\theta_{12}, \theta_{23}, \theta_{31}, \delta$ B factories (KEKB, PEP-II)

• α, α_s, G_F

• μ, λ Higgs factory = ILC

Yt, Yb, Yc, Ys, Yd, Yu, Yτ, Yμ, Ye

• $\theta_{12}, \theta_{23}, \theta_{31}, \delta$ B factories (KEKB, PEP-II)

Higgs studies

7

- many of these parameters will be directly measurable at the ILC:
 - Higgs self-coupling: λ
 - Yukawa couplings:
 - yt (associated production with top pair)
 - y_b, y_c (through Higgs decays)

	\sqrt{s} [GeV]	integrated luminosity	relative error	See tomorrow's talk by	
λ	500	2 ab ⁻¹	57%*	J.Tian	
y t	500	l ab ⁻¹	10%†	R.Yonamine	
Уь	250	250 fb ⁻¹	2.7%‡		
Ус	250	250 fb ⁻¹	8.7% ‡	Fl. Oho	

All results assume: m_H=120 GeV, beam polarization (-0.8, +0.3) * lots of room for improvement in analysis techniques † result of fast simulation study \$\$ error on branching fraction _9

LHC Higgs prospects

 3σ evidence expected for m_H>120 GeV with 10 fb⁻¹
improvement in H→bb and TT channels highly desired for low mass region

what if $m_H = 140 \text{ GeV}$?

- BF(H→bb) decreases
- H→WW becomes important!
- reanalysis with m_H=140 GeV needed for robust estimate
- <u>we will need to be</u> <u>prepared</u>

Higgs self-coupling with the photon-photon collider option (S. Kawada et al.)

BSM studies

Little Higgs with T-parity (E. Kato et al.) E_{CM}=I TeV

Zparticle	arass s	sensitivity
еА _н	₿1.9((GeV)	108#66%
√W _H	409(GeV)	002.00%
Z _H	368(GeV)	0.56%
е _н	410(GeV)	0.46%
ν _H	400(GeV)	0.10%

parameter	True value	Measurement accuracy	i linteritik
f	580(GeV)	0.16%	
К	0.5	0.01%	
• fast sim	ue Me ulation stu s to LHT.0	asurement accuracy Jody shows ILC is ve particle masses & c	ry ouplings

^{σ@0%pol} σ meas. theory talk on testing Little Higgs at LHGs&ILC by K. Harigaya tomorrow

Pseudo-stable SUSY particles

S. Kanemura

sleptons may be accessible at the LC!

stau as pseudo-stable NLSP

200

Stau mass (GeV)

150

17

250

- stau lifetime O(10cm):
 - stop the stau at HCAL to measure lifetime
 - stau mass determined from dE/dx information
 - talk by W. Yamaura tomorrow
- stau lifetime O(0.1mm):
 - measure stau lifetime by distribution of off vertex tracks
 - determine stau mass by threshold scan/ kinematic edges

analysis in progress by R. Katayama

Pseudo-stable SUSY particles

S. Kanemura

nearly degenerate gauginos may be accessible at the ILC !?

DBD benchmarks

- as part of Detailed Baseline Design (DBD) Report, the detector groups are required to study 3 processes at E_{cm}=1 TeV
 - $e^+e^- \rightarrow \nu\nu H$ with $H \rightarrow \mu\mu$, bb, cc, gg, WW^*
 - measure the branching ratios
 - to be covered by H. Ono (bb, cc, gg)
 - $e^+e^- \rightarrow W^+W^-$ with $W \rightarrow qq$, IV
 - measure in situ the left-handed polarization
 - to be covered by DESY group
 - $e^+e^- \rightarrow ttH$ with $H \rightarrow bb$ and 8 jets and 6 jets + lepton
 - measure the top Yukawa coupling
 - to be covered by R.Yonamine, TT, K. Fujii
- plus additional studies at 500 GeV e.g. ZHH, top pair, ...

papers

- "Hidden particle production at ILC" PRD 78, 015008 (2008)
- "Precision measurements of little Higgs parameters at the ILC" PRD 79, 075013 (2009)
- T. Saito et al. "Extra dimensions and seesaw neutrinos at the ILC" PRD 82, 093004 (2010)
- R.Yonamine et al. "Measuring the top Yukawa coupling at the ILC at sqrt(s) = 500 GeV" PRD 84,014033 (2011)
- T. Saito, T. Suehara et al. "Discrimination of new physics models with the ILC" Submitted to PRD

summary

- ILC Asia Physics Working Group is actively pursuing important physics studies at the ILC with focus on Higgs and BSM
- robustly adapt analysis targets as new LHC results come in
- at the same time, many DBD benchmark studies will be covered in time for the 2012 deadline