CMOS Pixel Sensors adapted to the ILD VTX

M. Winter (PICSEL team of IPHC-Strasbourg)

- Sensor design : coll. with IRFU-Saclay -- Ladder design : coll. with Bristol - DESY - Oxford -

Tokushin Kick-off Meeting - 13 Septembre 2011

- Development of CMOS pixel sensors
 - * architecture developped state of the art
 - * ILD-VTX based on CMOS sensors
 - * evolution towards new CMOS technologies
- Development of ultra-light ladders
 - ★ double-sided ladders
 - * unsupported ladders
 - * double-sided ladder performance assessment (AIDA project)
- Summary

CMOS Pixel Sensors: Established Architecture

- Main characteristics of MIMOSA sensor equipping EUDET BT:
 - * 0.35 μm process with high-resistivity epitaxial layer (coll. with IRFU/Saclay)
 - * column // architecture with in-pixel amplification (cDS) and end-of-column discrimination, followed by \emptyset
 - * active area: 1152 columns of 576 pixels ($21.2 \times 10.6 \text{ mm}^2$)
 - st pitch: 18.4 $\mu m
 ightarrow$ \sim 0.7 million pixels
 - \triangleright charge sharing $\Rightarrow \sigma_{sp} \lesssim$ 3.5 μm
 - * $t_{r.o.} \lesssim 100 \ \mu s$ (~10⁴ frames/s) suited to >10⁶ part./cm²/s
 - * JTAG programmable
 - * rolling shutter architecture
 - \Rightarrow full sensitive area dissipation \equiv 1 row
 - $ho~\sim$ 250 mW/cm 2 power consumption (fct of N $_{col}$)
 - $\ensuremath{\, \mathrm{ \ensuremath{ \mathrm{ \ensuremath} \ensuremath{ \mathrm{ \ensuremath{ \mathrm{ \ensuremath} \ensuremath{ \mathrm{ \ensuremath{ \mathrm{ \ensuremath} \ensuremath{ \ensuremath{ \mathrm{ \ensuremath} \ensuremath{ \mathrm{ \ensuremath} \ensuremath{ \ensuremath{ \mathrm{ \ensuremath} \ensuremath{ \ensuremath{ \mathrm{ \ensuremath} \ensuremath{ \ensuremath{ \ensuremath{ \mathrm{ \ensuremath} \ensuremath{ \ensuremath} \ensuremath} \ensuremath{ \ensuremath} \ensuremath{ \ensuremath} \ensuremath} \ensuremath{ \ensuremath} \ensuremath} \ensuremath{ \ensuremath} \ensuremath} \ensuremath{ \ensuremath} \ensuremath} \ensuremath} \ensuremath{ \ensuremath} \ensuremath} \ensuremath} \ensuremath} \ensuremath{ \ensuremath} \ensuremath} \ensuremath} \ensuremath{ \ensuremath} \ensuremath} \ensuremath{ \ensuremath} \ensuremath} \ensuremath} \ensuremath} \ensuremath{ \ensuremath} \ensuremath{\ensuremath} \ensuremath} \ensuremath} \ensuremath} \ensuremath} \ensuremath} \ensuremath \ensuremath} \ensuremath} \ensuremath} \ensuremath} \ensuremath} \ensuremath \ensuremath} \ensuremath} \ensuremath} \ensuremath} \ensuremath \ensuremath} \ensuremath} \ensuremath \ensuremath} \ensuremath \ensuremath} \ensuremath \ensuremath} \ensuremath \ensuremath} \ensuremath \ensuremath} \ensuremath \ensuremath \ensuremath} \ensuremath \ensuremath \ensuremath \ensuremath} \ensuremath \ensuremath \ensuremath} \ensuremath$

State-of-the-Art: MIMOSA-28 for the STAR-PXL

- Main characteristics of ULTIMATE (\equiv MIMOSA-28):
 - * 0.35 μm process with high-resistivity epitaxial layer
 - * column // architecture with in-pixel cDS & amplification
 - * end-of-column discrimination & binary charge encoding
 - * on-chip zero-suppression
 - * active area: 960 colums of 928 pixels (19.9 \times 19.2 mm²)
 - * pitch: 20.7 $\mu m \rightarrowtail \sim$ 0.9 million pixels
 - \hookrightarrow charge sharing $\Rightarrow \sigma_{sp} \gtrsim$ 3.5 $\mu m \qquad \rhd \rhd \rhd$
 - * JTAG programmable
 - * t_{r.o.} \leq 200 μs (\sim 5×10³ frames/s) \Rightarrow suited to >10⁶ part./cm²/s
 - * 2 outputs at 160 MHz
 - $\, { * \, \lesssim \, \rm 150 \, mW/cm^2}$ power consumption
- $\triangleright \triangleright \triangleright$ Tests under way since early April : (50 μm thin)
 - * N \leq 15 e⁻ ENC at 30-35^oC (as MIMOSA-22AHR)
 - * CCE (55 Fe) similar to MIMOSA-22AHR
 - $-\infty$ Ionising rad. tolerance validated (150 kRad at 30 $^{\circ}$ C)
 - NI rad. tolerance validation (3.10¹² n_{eq}/cm² at 30°C) in Oct. 2011
- **DDD** Start of data taking in FY-2012

CMOS sensors for the ILD-VTX

• Two types of sensors :

* Inner layers ($\leq 300 \text{ cm}^2$) : priority to read-out speed & spatial resolution \hookrightarrow small pixels (16×16 / 80 μm^2) with binary charge encoding \hookrightarrow t_{r.o.} \sim 50 / 10 μs ; $\sigma_{sp} \leq$ 3 / 5 μm

- * Outer layers ($\sim 3000 \text{ cm}^2$) : priority to power consumption and good resolution \hookrightarrow large pixels ($35 \times 35 \ \mu m^2$) with 3-4 bits charge encoding $\hookrightarrow t_{r.o.} \sim 100 \ \mu s; \ \sigma_{sp} \lesssim 4 \ \mu m$
- * Total VTX instantaneous (average) power < 700 W (20 W)
- 2-sided ladder concept for inner layer :
 - * Square pixels (16×16 μm^2) on internal ladder face (σ_{sp} < 3 μm) & Elongated pixels (16×80 μm^2) on external ladder face (t_{r.o.} ~ 10 μs)
- Sensor final prototypes : submitted for fab. Sept. 4th, 2011
 - * MIMOSA-30: inner layer prototype with 2-sided read-out
 - \hookrightarrow one side : 256 pixels (16×16 μm^2)
 - other side : 64 pixels (16imes64 μm^2)
 - * MIMOSA-31: outer layer prototype
 - \hookrightarrow 48 col. of 64 pixels (35imes35 μm^2) ended with 4-bit ADC

Towards a Large Pitch

• Large pitch : Motivations

st elongated pixels allow faster read-out st trackers (e.g. ILD-SIT) require $\sigma_{sp}\gtrsim$ 10 μm

- \Rightarrow minimise number of pixels for the sake of power dissipation, integration time and data flow
- Large pitch : Limitations (besides spatial resolution)
 - * DANGER: increasing distance inbetween neighbouring diodes
 - \Rightarrow particles traversing sensor "far" from sensing diodes may not be detected because of e⁻ recombination
 - * "fragile" detection efficiency, exposed to losses due to irradiation, high temperature operation & "slow" read-out
- Elongated pixels : Test results
 - * elongated pixels allow minimising the drawbacks of large pitch
 - * concept evaluated with MIMOSA-22AHR prototype, composed of a sub-array with 18.4×73.6 μm^2 pixels $\triangleright \triangleright \triangleright$
 - * m.i.p. detection performances assessed at CERN-SPS (T \sim 15 $^{\circ}$ C)
 - $-\!\!\circ~\epsilon_{det}\sim$ 99.8 %
 - $-\!\!\circ~\sigma_{sp}\sim$ 5-6 μm (binary charge encoding)
- Square pixels : prototype back from foundry
 - * MIMOSA-29 being fabricated on high-res epitaxy
 - * pixels of \leq 80 \times 80 μm^2

Moving to 0.18 μm CMOS Technology

• Evolve towards feature size << 0.35 μm :

* μ circuits : smaller transistors, more Metal Layers, ...

- Benefits :
 - * higher μ circuit density \Rightarrow higher data reduction capability
 - * thinner gates, depletion \Rightarrow improved radiation tolerance (in particular ionising radiation)
 - * faster read-out \Rightarrow improved time resolution
 - * possibility of stitching \Rightarrow multireticule sensors
- Development plans :
 - * also motivated by ALICE-ITS/MFT, CMB-MVD, AIDA-SALAT, eRHIC-VD, ...
 - ★ step 1 : MIMOSA-32 > submission on 24.10.11
 - -o exploratory sensor (various sensing systems, amplifiers, discri., ...)
 - ★ step 2 : MIMOSA-22THR & SUZE-02 ▷ submission in Spring '12
 - -- M22-THR : 128 col. of 512 pixels, ended with discri.
 - \multimap SUZE-02: zero-suppression μ circuit
 - ★ step 3 : Full Scale Basic Block (FSBB) > submission in Spring '13
 - $-\infty$ 1x1 cm² sensitive area (\sim 20 μm pitch)
 - --- combination of M22-THR & SUZE-02
 - $-\infty$ scalable to various applications (\geq 2014) \triangleright \triangleright \triangleright

Sensor Integration in Ultra Light Devices

- Double-sided ladders with time stamping :
 - * manyfold bonus expected from 2-sided ladders:
 - compactness, alignment, pointing accuracy (shallow angle), redundancy, etc.
 - * studied by PLUME coll. (Oxford, Bristol, DESY, IPHC) & AIDA (EU)
 - ← Pixelated Ladder using Ultra-light Material Embedding
 - * square pixels for single point resolution on beam side
 - * elongated pixels for 4-5 times shorter r.o. time on other side
 - * correlate hits generated by traversing particles
 - $\textit{\texttt{*}}$ expected total material budget \sim 0.3 % X_{0}
 - \hookrightarrow 1st proto. (0.6 % X₀) fabricated & operationnal
 - ▷ beam tests at CERN-SPS (traversing m.i.p.) in Nov. '11
- Unsupported ladders (Hadron Physics 2 / FP-7)
 - * 50 μm thin CMOS sensors embedded in thin kapton and cabled with redistributed connections \rightarrow suited to curved surfaces ?
 - * expected total material budget \lesssim 0.15 % X $_0$
 - * 1st single sensor mechanical prototype fabricated
 - * 1st 2-sensor electrical proto. expected before end of 2011

Final

AIDA Project : Assessment of Stitching & 2-Sided Ladder

• Single Arm Large Area Telescope (SALAT):

- st 2048imes3072 pixels (\sim 20 μm pitch)
 - \Rightarrow 4×6 cm² sensitive area, \sim 3.5 μm spatial resolution
- * requires combining several reticules (based on FSBB)
 - \Rightarrow stitching process \Rightarrow establish proof of principle
- st 2-sided read-out of 1024 rows in \sim 200 μs
 - \Rightarrow 3 planes of Large Area Telescope for AIDA project (EU-FP7)
- st windowing of \lesssim 1imes6 cm 2 (collimated beam)
 - \Rightarrow \sim 50 μs r.o. time
- * 50-100 μm pitch variants under consideration (trackers)

Alignment Investigation Device (AID) :

- * box allowing to mount 3 pairs of ladders arranged in 3 consecutive layers \equiv VTX sector
- * can be equipped with PLUME (2-sided) ladders
- * ladders are mounted on movable micrometric support
 - ⇒ investigate alignment with particles traversing overlapping regions of neighbouring ladders
- * allows developing clustering, tracking & vertexing algo. with particle beams

SJA I	612x612	BUZE Discliminators e15×e15	Discriminators	Discriminators Discriminators	Discriminators Discriminators	SUZE Discriminatore
SR	Discriminato	Discriminators		Discriminatore	Discriminators	Discrimination
	212×213	215×215	7107710			
			C134C13	212×212	212x512	612×612
	212×213	212×213	212×512	212x612	212×212	212×212
512x512	512x512	512x512	512x512	512x512	512x512	512x512
Discriminators	512x512	512x512	512x512	512x512	512x512	512x512
	scriminators	Discriminators	Discriminators	Discriminators	Discriminators	Discriminators
	SUZE	SUZE	SUZE	SUZE	SUZE	SUZE
(lemonte (lemonte a	antonesi lantonesi	Series and series	Canadana Canadana	Campion Manager	Samana Samana	(contract) (contract)

SUMMARY

- Sensor architecture developed in 0.35 μm technology validated :
 - \triangleright complies with specs of σ_{sp} , thickness, rad. tol. (T_{room}), r.o. speed & P_{diss} of VTX
 - ▷ sensors getting implemented in various devices: STAR-PXL, NA-63, CMB-MVD, ALICE-ITS & MFT, ...
- Translation 0.35 $\mu m
 ightarrow$ 0.18 μm CMOS under way :
 - ▷ exploratory chip (MIMOSA-32) to be submitted for fabrication on 24.10.2011
 - ▷ mid-scale prototypes validating architecture in Summer 2012 ▷ DBD
 - ▷ Full Scale Basic Block (FSBB) expected to be validated in 2013
 - \triangleright design flexible enough to be adaptable to various designs
- Long range R&D : 3D sensors for SiD, ILC-1000, CLIC
- Ladders development makes progress :
 - * 2-sided ladder 1st proto. (0.6 % X₀) fabricated & operationnal \triangleright beam tests (SPS) in Nov. 2011
 - st next 2-sided ladder (2012) expected to feature < 0.4 % X $_0$
 - * 2-sided ladder added value will be assessed within AIDA-EU project
 - * unsupported ladder (0.1 0.15 % X_0) concept progressing (1 mechanical proto. successful) \triangleright adapted to curved surfaces ?
- Numerous spin-offs foreseen \Rightarrow opportunities of combined efforts