ILD and SiD in Japanese site (from discussions in SiD/ILD E/D Interface Working Meeting) Yasuhiro Sugimoto, Marco Oriunno 2011/12/15 SiD Workshop@SLAC ## Japanese candidate sites Two candidate sites under investigation - Kitakami Sefuri Both sites have very good geology of granite ## Detector hall in Japanese sites - Earth covering depth is quite large: 200~500m - Therefore, (inclined) horizontal tunnel is used for access instead of vertical shafts - Length of the access tunnel is 1000~1700m, depending on the detail of the site - In addition to the main cavern, storage caverns and a compressor cavern will be build # Tunnel layout examples #### IR hall Specifications - I-shape, 25m(W)x110m(L)x37m(H) - Access tunnels from a side wall - Construction adit at the top of the cavern - After construction, it will be used for a duct tunnel and a path of smokes/He gas in emergency - Alcoves (7.5m depth) at the garage positions - Storage caverns (alcoves) at both ends - Two sets of ~250 ton crane with smaller sub-crane - 1 m thick side walls supporting crane rails - Floor level is 12.6 m (=9+2.2+1.4) below the beam line ## Storage cavern - Purpose - Storage of detector pieces before installation - Preparation/storage of tools for detector assembly/installation - Meeting rooms and rest room can be build in this cavern - Size:15m(W)x20m(D)x15m(H) - Connected to the main access tunnel by a small tunnel - ILD storage cavern is connected to the compressor cavern by a small tunnel ## Compressor cavern 15m(W)x50m(L)x7m(H) Helium compressor and liquefier for ILD/SiD solenoid – QD0/QF1 Common or Crab cavity independent? - Requirements: - 400kW electric power - 300L/min cooling water - 10000m³/h air ventilation - Air compressor for air-pads? # Cryogenic system - Helium gas storage tank on surface - Compressor and liquefier in the compressor cavern - 4K saturated liquid helium tank in the main cavern or in the (ILD) storage cavern - 2K sub-coolers in (near) the beam tunnels - We need more discussions to make the detailed design ## ILD Detector assembly - Solenoid - Wound, assembled, and tested on surface - Carried into the cavern as a whole - Return yoke - Pre-assembled on surface as relatively small blocks ~200 tons - Each ~200 ton block is carried into the cavern one by one and assembled into one barrel - No gap in the barrel yoke → Less leakage field - Large assembly hall on surface is necessary ## ILD Detector assembly - 1. Barrel assembly - 2. Endcap (+) assembly - 3. Endcap (-) assembly - 4. Solenoid installation - 5. QD0 support tube (-) assembly - 6. QD0 support tube (+) assembly - 7. Sub-detector installation # SiD Detector assembly #### Iron Barrel Yoke layout ### 171,644 277,444 Bolted assembly, 144 plates 200 mm thick, 40mm gap Opportunity to make blank assembly at the factory before shipping Preliminary Contacts with Kawasaki Heavy Industries - Plate thickness tolerance for each: 0.1mm - Plate flatness: 4mm (in a plate) - Fabrication (assembling & welding) tolerance: 2mm - Full trial assembly: capable (but need to study) #### Solenoid Installation #### Iron Door Yoke, Bolted assembly, no vertical split 180.0 THK. 11000.0 CHAMBER #### 1878 tons - Uses continuous cast steel plates rolled to 200 mm thickness - 40mm gaps for muon identification chambers - Plate-to-plate spacers are staggered for better muon identification coverage - Bolted construction 1900.0, 10x CHAMBER • 100mm thick inner support cylinder ~ 12 x 38 tons trips along the transfer tunnel A trailer with lower deck height would reduce the tunnel size ## Access Tunnel, Coil Corners should have larger R ## Summary - In Japanese site, horizontal access tunnel, rather than vertical shafts, is used for detector installation - In addition to the main cavern, storage caverns and a compressor cavern will be made - Detectors are pre-assembled to relatively small (<~250 ton) pieces on surface, and assembled to complete detectors underground - SiD and ILD have rough detector assembly procedures compatible with the experimental hall with horizontal access tunnel - More detailed procedure should be established for DBD # Backup slides Cross section view along the beam line Side wall – garage side (view from inside) Side wall – access tunnel side ## Access tunnel parameters - There are several options for the ILC route and the location of the IP, and the optimization is not done yet - Parameters listed below are just for some examples of the access tunnel to the experimental hall | Site | Option | Length | Slope | Earth
covering* | Beam line elevation | |------|--------|--------|-------|--------------------|---------------------| | A | 1 | 1770 m | 6.3% | ~300 m | 110 m | | | 2 | 980 m | 6.3% | ~200 m | 110 m | | В | 1 | 1420 m | 7% | ~550 m | -30 m | | | 2** | 1470 m | 7% | ~400 m | -21 m | - (*) Vertical distance between the cavern ceiling and the surface These values changes largely with the IP location - (**) Main linac is inclined by 0.03% - Trailer truck for transportation - 225t/5axles→450t with 2 trailers - Capability of ~7% slope Gear track (Abt system) is also suggested Crossing with main access tunnel Crossing with sub access tunnel ## Safety issues #### Ventilation - Smoke and Helium gas will go out through the construction adit connected at the top of the cavern, and will not flow into the access tunnel - Small vertical shaft for GPS alignment may be used for ventilation - Amount of Helium gas ~ 20000m³ (CMS: 2x250m³x20bar =10000m³ at 1bar, x2 for SiD+ILD) =25mx100mx8m → No problem - Escape in emergency - Enough number of electric cars equipped with oxygen masks will effectively take people to the surface #### Electric cars Mitsubishi **TOYOTA** Nissan # Parking area Main access tunnel and compressor cavern are large enough for parking space of >50 cars ## Things to do - More considerations and studies on - Safety issues (evacuation of people in emergency) - Vehicles for transportation of heavy elements (gear track?) - Parameters to be specified - Crane capacity - Temperature and dew point in the cavern - Requirements for electric power, cooling water, and air conditioning - Estimations to be made - Ventilation speed of smoke/He - Stress and deformation of the cavern with complete design - Cost and construction period