Higgs Searches at ATLAS

W. Quayle

On Behalf of the ATLAS Collaboration

SLAC Seminar

14 December, 2011

Higgs Production & Decays (1)

In the Standard Model, Higgs boson production primarily through gluon fusion and Weak Boson Fusion (WBF)

 In some searches (e.g. H→yy, bb), WH/ZH/ttH are important too

In MSSM/2HDM, $h^0/A^0/H^0$ is also produced in with two b quarks (if tan β is large). H[±] is produced in top decays if $M_{H^+} < M_{top}$, or in association with top (gb fusion) if $M_{H^+} > M_{top}$

W. Quayle

SLAC Seminar, 14 December 2011

Higgs Production & Decays (2)

▶ Right: cross-sections (top) and $\underline{\underline{B}}_{1}$ branching ratios (bottom) in the $\hat{\underline{Y}}_{\pm}^{\uparrow}$ Standard Model (SM)

Standard Model decay modes which have been analyzed in data:

- ${\color{red}\bullet}\,H{\color{black} \rightarrow}WW$, $H{\color{black} \rightarrow}ZZ$ at high mass
- H \rightarrow bb, H \rightarrow $\tau\tau$, and H \rightarrow $\gamma\gamma$ at low m_H
- Two MSSM decay modes have been analyzed in data so far:
 - $H^+ \rightarrow \tau \nu$, $A/H^0 \rightarrow \tau \tau$
- Recently updated:
 - $H \rightarrow ZZ \rightarrow 41$ & $H \rightarrow \gamma\gamma$ to 4.8-4.9 fb⁻¹
 - $H \rightarrow WW \rightarrow l_V l_V$, $H \rightarrow ZZ \rightarrow llqq$, and $H \rightarrow ZZ \rightarrow ll_{VV}$ now use 2.1 fb⁻¹

LHC & Pileup

Excellent LHC performance: 5.61 fb⁻¹ delivered to ATLAS Becorded by ATLAS with 02 5% of the second se

- Recorded by ATLAS with 93.5% effic.
 Data quality selections cut another 4-
- 10%, depending on the analysis

High luminosity comes from improvements like narrower beams and 50 ns bunch spacing

- Most feasibility studies over the last 20 years assumed ~2 interactions per bunch crossing during the 10³³ phase, but we get some events with more than 20 now
- Important impact on E_T^{miss} reconstruction, simulation, trigger, etc.
 - precise modeling of both in-time and out-of-time pileup is crucial

$H \rightarrow WW \rightarrow l_V l_V$ (1)

 Requiring two leptons suppresses QCD multijet background to negligible levels
 Large background from Z is suppressed by requiring large E_T^{miss} in same-flavor events (left)
 Top events are rejected by cut on jet multiplicity (right).
 N_{jet}=0 and N_{jet}=1 considered in current analysis

 $N_{jet} = 2$ is hopefully coming sometime this winter

$H \rightarrow WW \rightarrow l_{\nu}l_{\nu}$ (2)

Event selection exploits different angular distributions caused by kinematics and by spin correlations. Above: M_{ll} (left) and $\Delta \varphi_{ll}$ (right) in events with no jets

Backgrounds are estimated with control samples:

- \bullet Diboson: count events in a region with altered $M_{\rm ll}$ and $\Delta\varphi_{\rm ll}$ cuts
- Top (in H+1j): reverse b-veto and drop cuts on M_{II} , M_{T} , and $\Delta \varphi_{II}$

Control Region	Expected BG	Observed
WW+0j	296±59	296
WW+1j	171±8	184
tt+1j	270±79	249

W. Quayle

SLAC Seminar, 14 December 2011

$H \rightarrow WW \rightarrow l_V l_V$ (3)

For major BGs (WW+0/1j and tt+1j), control samples are modeled in fit using ratio of cross-sections in signal region over control region taken from MC

Uncertainties in table

Source	WW+0j	WW+1j	tt+1j (SR)	tt+1j (CR)
Q ² scale	2.5%	4%	9%	-
MC Modeling	3.5%	3.5%	4%	-
PDF	3.8%	3.5%	3%	-
Jet E scale/res	+1.7/-0.6%	+1.9/-8%	+0.7/-17%	+3.6/-2.6%
MET uncert.	+1.7/-0.6%	+3.9/-13%	+6.9/-13%	+1.4/-5.5%
Lept. eff & res	+0.2/-0.1%	+1/-2.3%	+0.6/-1.4%	+0.7/-0.6%
b-tagging	-	-	+24/-29%	-23/+28%
MC stats	4.3%	12.9%	6%	-

Control sample strategies for other (minor) backgrounds:

- Top in H+0j uses two control samples:
 - Two leptons and E_T^{miss} w/non-top backgrounds removed using MC
 - → Two leptons and E_T^{miss} , w/ ≥1 b-tagged jet; used to estimate an efficiency for the jet veto
 - Efficiency from second control sample and corrections from MC are applied to first control sample to estimate top in signal region
- W+jets is estimated using a loosened lepton selection.
- Z+jets is taken from MC, but with a scale factor derived from data in the Z peak

 $H \rightarrow WW \rightarrow l_{\nu}l_{\nu}$ (4)

Z+jets is taken from MC, but with a scale factor derived from an "ABCD" method:

- Take (N in reg. B)/(N in reg. D) from data in the Z peak and multiply by (N in reg. D)/(N in reg. B) from MC to get a scale factor to apply to the MC estimate of N in reg. A
- Scale factors this way are ~0.8-0.9, indicating that MC slightly overestimates the high-MET tail

$H \rightarrow WW \rightarrow l_{\nu}l_{\nu}$ (5)

arXiv:1112.2577

Upper bounds on production cross-section (left) and probability to find a similar or larger excess if there is only background (right).

- \circ No significant excess, always less than 2σ
- Excess is driven by a fluctuation in the μμ channel
- Upper limit is set as a function of m_H , in units of the Standard Model prediction. ATLAS excludes $145 < m_H < 206 \text{ GeV}$ (134 < $m_H < 200 \text{ GeV}$ expected)

Select events with one lepton, two or three jets, and E_{T}^{miss}

Two jets must have m_{ii} close to m_W (left)

Contributes to large systematic from the jet E scale uncertainty Estimate background from jets misidentified as leptons using a sample of events in data with lepton isolation cut reversed.

- Can estimate the shapes of most kinematic variables by just plotting. See, for example, green region in upper right plot
- A normalization factor is estimated with a template fit to the E_T^{miss} distribution (right). Shape of V+jets taken from MC, but it floats in the fit too and both contributions are rescaled for the final plots.

120

$H \rightarrow WW \rightarrow l_{\nu}qq$ (2)

Exclude 2.7xSM for $m_H = 400 \text{ GeV}$

-100

200

250

300

350

400

450

for signal)

H+0/1j, H \rightarrow WW \rightarrow lv jj

11111111111

550

500

600

650

m_{ly gg}[GeV]

$H \rightarrow ZZ \rightarrow llqq(1)$ ATLAS-CONF-2011-150 Events / 25 GeV 180<u>⊢</u> ATLAS Preliminary GeV **ATLAS** Preliminary 4 L dt=2.05 fb data data L dt=2.05 fb 160F Signal × 10 Signal (m,=400 GeV) 3.5 Events / 25 (m_=400 GeV) Total Background 140 Total Background 120 Top Тор 2.5 Diboson Diboson 100 80 1.5 60 40 0.5 20 0 Ω 100 200 300 400 500 600 800 900 100 200 300 400 500 600 800 900 700 700 [GeV] m_{IIii} [GeV] m_{IIII}

Signature is two leptons and two jets, with small MET, and with M_{ll} and M_{qq} near M_Z.
 Divide the signal into events with fewer than two b-tagged jets (left) and events with two (right)
 For m_H≥300 GeV, also use angular information about the jets and leptons to suppress background.
 Require Δφ_{ll}>π/2, Δφ_{ij}>π/2, and p_T^{j1,j2}>45 GeV

W. Quayle

Background shape and normalization in MC is validated by data/MC comparisons in m_{jj} sidebands (left) and m_{ll} sidebands (not shown)

Systematic error on the Z+jets normalization comes from comparisons of these sidebands, and ranges from 1.4% for low-m_H untagged selection to 18% for high-m_H b-tagged selection. Shape uncertainty comes from comparisons between Pythia and Alpgen
 Observed limits are approaching the Standard Model prediction for m_H near ~300-400 GeV

▶ Left: set limits based on the transverse mass distribution

- Systematic errors based on theory: gluon fusion signal (+12/-7%), VBF signal (1%) and diboson background (10%)
- Systematic errors based on comparisons to data: Z boson production (2.5%), top quark production (9%), W+jets (100%), and QCD multijet (50%)

 \blacktriangleright Right: current measurement excludes a Standard Model Higgs boson in the range 310<m_{\rm H}{<}470~GeV

$H \rightarrow ZZ \rightarrow 41$ (1)

Very clean: four leptons (e or μ)

Dilepton mass, lepton isolation, and impact parameter cuts suppress top and Z+jets

Recent updates:

- Luminosity increased to 4.8 fb⁻¹
- Alignment between inner detector and muon spectrometer has been improved
- Bremsstrahlung refitting for electrons to improve performance at low p_T

Very good mass resolution helps to discriminate signal from otherwise irreducible continuum ZZ background
 Above: resolution for m_H=130 GeV is 1.98 GeV for 4μ channel (left) and 2.53 GeV for 4e channel (right) based on signal MC
 15% of events outside of ±2σ region for 4μ channel, 18% for 4e

LAS-CONF-2011-162

 $H \rightarrow ZZ \rightarrow 41$ (3)

 25.4 ± 3.5 , and 16.3 ± 2.3 expected, respectively.

• For m_{4l} <180 GeV: 2 ee, 3 eµ, and 3 µµ observed, with 2.9±0.7, 4.2±0.8, and 2.2±0.3 expected, respectively.

• Above: m_{41} dist. below 250 GeV (left) and for all masses (right)

There are three interesting events at around 125 GeV.

Probability to see as significant an excess anywhere is >50%, so these events are not a real excess on their own AS-CONF-2011-162

$H \rightarrow ZZ \rightarrow 41$ (4)

4-muon event. Lepton pair masses: 89.7 GeV and 24.6 GeV. m_{41} =124.6 GeV

$H \rightarrow ZZ \rightarrow 41$ (5)

 $2e2\mu$ event. Lepton pair masses: 76.8 GeV and 45.7 GeV. m_{41} =124.3 GeV

$H \rightarrow ZZ \rightarrow 41$ (6)

ATLAS-CONF-2011-162

 $2e2\mu$ event. Lepton pair masses: 89.3 GeV and 30.0 GeV. m_{41} =123.6 GeV

Background estimates:

ZZ and top from MC prediction, but top is validated in control region
 Z+jets normalized to data using control region based on loosened isolation cuts for second lepton pair

Exclude m_H: 135-156 GeV, 181-234 GeV, and 255-415 GeV.

Most significant excesses are at $m_H = 125 \text{ GeV}$, 244 GeV, 500 GeV

Probability to see such bumps anywhere: >50% for all three cases

$H \rightarrow \gamma \gamma$ (1)

H→γγ decay proceeds only via top and W loops, so BR(H→γγ) is small (~0.002). However, no subsequent decay as in the case of H→ZZ→4l.
H→γγ signal is 0.04 pb, but background from continuum γγ is very large

- Cross-section for $qq \rightarrow \gamma\gamma$ is ~21 pb; for $qg \rightarrow \gamma\gamma$ it's about 8 pb.
- Background from γ+jet (before photon ID cuts) is ~1.8x10⁵ pb
- Background from dijets is ~5x10⁸ pb.
- Need large rejection, esp. against π^0 decays.

Photon ID is based on lateral and longitudinal segmentation of the electromagnetic calorimeter.

Very good mass resolution of ~1.7 GeV helps distinguish between Higgs signal and continuum background
Events are separated into categories based on the quality of photon reconstruction and location of photon candidates.
Resolution ranges from ~1.4 GeV for unconverted photons in the central region of the detector (left) to ~2 GeV with asymmetric tails for photons which land in the region between the barrel and endcap and also show signs of having converted to an e⁺e⁻ pair before reaching the calorimeter (right)

Category	Conversion and η	p_{Tt} cut	Number of data events
CP1	Unconverted Central	$p_{\mathrm{Tt}} \leq 40 \mathrm{~GeV}$	1763
CP2	Unconverted Central	$p_{\mathrm{Tt}} > 40 \mathrm{~GeV}$	235
CP3	Unconverted Rest	$p_{\mathrm{Tt}} \leq 40 \mathrm{~GeV}$	6234
CP4	Unconverted Rest	$p_{\mathrm{Tt}} > 40 \mathrm{~GeV}$	1006
CP5	Converted Central	$p_{\mathrm{Tt}} \leq 40 \mathrm{~GeV}$	1318
CP6	Converted Central	$p_{\mathrm{Tt}} > 40 \mathrm{~GeV}$	184
CP7	Converted Rest	$p_{\mathrm{Tt}} \leq 40 \mathrm{~GeV}$	7311
CP8	Converted Rest	$p_{\mathrm{Tt}} > 40 \mathrm{~GeV}$	1072
CP9	Converted Transition	No cut	3366
Total			22489

$$\hat{t} = rac{\vec{p}_{\rm T}^{\gamma_1} - \vec{p}_{\rm T}^{\gamma_2}}{|\vec{p}_{\rm T}^{\gamma_1} - \vec{p}_{\rm T}^{\gamma_2}|}$$

- New in this update: split categories into high and low p_{Tt} (p_T relative to diphoton thrust axis)
 - Preserves exponential shape for background
 - Left: with 4.9 fb⁻¹, there are enough events to do this
- Definition of p_{Tt}:

$$\vec{p}_{\mathrm{T}}^{\gamma\gamma} = \vec{p}_{\mathrm{T}}^{\gamma_1} + \vec{p}_{\mathrm{T}}^{\gamma_2}$$

$$\vec{p}_{\mathrm{Tt}} = \vec{p}_{\mathrm{T}}^{\gamma\gamma} - (\vec{p}_{\mathrm{T}}^{\gamma\gamma} \cdot \hat{t}) \cdot \hat{t}$$

 $p_{\mathrm{Tt}} = |\vec{p}_{\mathrm{T}}^{\gamma\gamma} \times \hat{t}|$

Composition of background (i.e. relative contribution from yy, y-jet, jet-jet) is checked using loosened photon ID & isolation cuts (left). Selected events are dominantly diphoton events.
 Signal is extracted using a fit to M_{yy} (right). Plot shown above is inclusive, but fit treats pseudorapidity/conversion/p_{Tt} categories separately

$H \rightarrow \gamma \gamma$ (5)

Right: summary of systematic uncertainties on signal.

- Uncertainties on yield and resolution are fully correlated among the different categories
- Event migration uncertainties are anti-correlated between low/high-p_{Tt} categories and converted/unconverted categories
- Below: uncertainty on BG model is estimated based on fits to RESBOS/DIPHOX MC distributions.

ATLAS-CONF-2011-161

Type and source	Uncertainty
Event yield	
Photon reconstruction and identification	$\pm 11\%$
Pileup effect on photon identification	$\pm 4\%$
Isolation	$\pm 5\%$
Trigger	$\pm 1\%$
Higgs boson cross section	+15%/-11%
Higgs boson $p_{\rm T}$ modeling	$\pm 1\%$
Luminosity	$\pm 3.9\%$
Mass resolution	
Calorimeter energy resolution	$\pm 12\%$
Photon energy calibration	$\pm 6\%$
Pileup effect on energy resolution	$\pm 3\%$
Photon angle resolution	$\pm 1\%$
Migration	
Higgs boson $p_{\rm T}$ modeling	$\pm 8\%$
Conversion reconstruction	$\pm 4.5\%$

Category	CP1	CP2	CP3	CP4	CP5	CP6	CP7	CP8	CP9
Events	±4.3	± 0.2	±3.7	± 0.5	±3.2	± 0.1	±5.6	±0.6	±2.3

$H \rightarrow \gamma \gamma$ (6)

95% CL limit on σ/σ_{SM}

Exclude m_H ranges: 114-115 GeV, 135-136 GeV
 Significance of largest excess (m_H=126 GeV) is 1.5σ
 after accounting for the look-elsewhere effect
 Would be 2.8σ if we had been looking only at this mass

WH/ZH, H→bb (1)

ATLAS-CONF-2011-103

▶ ggH and WBF are dominant Higgs production mechanisms, but for H→bb these modes are overwhelmed by background. WH/ZH (H→bb) is best for this decay mode ▶ Select W→lν and Z→ll decays by requiring two leptons or one lepton and E_T^{miss} .

Select two b-tagged jets with $p_T > 25 \text{ GeV}$

Dominant backgrounds for both are W+jets, Z+jets, top

WH/ZH, H→bb (2)

ATLAS-CONF-2011-103

Top quark backgrounds are checked with control samples.
Left: control sample for WH consists of events with three jets (in the signal region only two are allowed)

Top normalization in signal region comes from fit to sidebands in m_{bb}
 Right: control sample for ZH consists of events with m_{ll}
 outside the Z peak

Assign 9% uncertainty to top in ZH based on this comparison; 6% for top in WH based on the fit to m_{bb}

WH/ZH, H→bb (3)

ATLAS-CONF-2011-103

Uncertainty	ZH, 115 GeV	ZH, 130 GeV	WH, 115 GeV	WH, 130 GeV
Muon Res.	1%	4%	3%	1%
Jet E scale	9%	7%	1%	3%
E_{T}^{miss} Res.	2%	2%	2%	3%
b-tagging eff.	16%	17%	16%	17%
b-tag mistag	<1%	<1%	3%	3%
Luminosity	4%	4%	4%	4%
Higgs x-sec	5%	5%	5%	5%

 Above: major sources of background uncertainty. Several other sources contribute at the level of 1% or less
 Electron E scale & resolution, Jet E res., electron and muon efficiency
 Exclude Higgs production with cross-section ~10-20 times the Standard Model prediction

MSSM H/A $\rightarrow \tau\tau$ (1)

ATLAS-CONF-2011-132

Three channels considered:

eµ channel: require lepton p_T cuts, scalar sum of p_T^e, p_T^µ, and E_T^{miss} less than 120 GeV, and Δφ_{ll}>2 radians. Analysis is based on m_τ^{eff}=√(p_e+p_µ+E_T^{miss}), shown in the left plot
lh channel: require lepton& jet p_T cuts, E_t^{miss}>20 GeV, and m_T(l,E_T^{miss})<30 GeV. Analysis is based on the MMC mass, similar to collinear approximation but more sophisticated. (Right plot)
hh channel: hard τ-jet p_T cuts, E_T^{miss}>25 GeV (not shown)

MSSM H/A $\rightarrow \tau\tau$ (2)

QCD/W+jets backgrounds come from data:

- eµ channel: shape is taken from a sample of anti-isolated leptons; normalization from a similar comparison for same-sign events.
- In channel: W+jets background is estimated from same-sign events times a factor from MC.

hh channel: shape from loose tau ID, norm. from same-sign samples
 Z+jets modeled using MC, validated with the τ embedding method used in the Standard Model search (above)
 Other backgrounds are modeled using MC

MSSM H/A $\rightarrow \tau\tau$ (3)

For Z+jets (the dominant background in e_{μ} and lh), the largest uncertainty is from theory error on the acceptance, amounting to 5% for e_{μ} and 14% for lh channels.

For the hh channel, the main uncertainty on QCD multijets (i.e. the largest BG) is the statistical error on the number of same sign events (used in the data-driven normalization)

A large region of the $m_A/tan(\beta)$ plane is excluded (left), and an upper bound on the cross-section vs m_A is set (right)

Standard Model H→ττ

The results for this channel have also been interpreted in terms of the Standard Model.

The limits are at the level of about 10x the Standard Model cross-section

Charged Higgs (1)

Backgrounds are ttbar, single top, W+jets, and Z+jets ^{E^{miss}_T [GeV]}
 Events with real MET from a W decay can include electrons/jets misidentified as taus and correctly identified tau jets

- Electron fake rate is checked using tag & probe on the Z peak
- Jet fake rate is checked using γ +jets events
- True tau contribution is studied using embedding technique: select singlemuon ttbar events, remove reconstructed muon, and replace with simulated τ

Events with no intrinsic MET (multi-jet events) are controlled by

- a template fit to the MET distribution
 - Fake MET background is modeled by a control sample defined by reversed b-tagging and τ ID cuts; real MET background (W+jets, ttbar) modeled by MC

Charged Higgs (2)

ATLAS-CONF-2011-138

The data-driven methods used for the various backgrounds describe the data in the signal region well.

• Left: the transverse mass distribution in the signal region

The current limit on the branching ratio for $t \rightarrow bH^+ \rightarrow b\tau v$ ranges from 3-10%, depending on mass

Charged Higgs (3)

Can also use events with leptons. To match leptons to b-jets from the same top decay:

In one-lepton channel, pick the best t→jjb cand. and match lepton to the other b

• In two-lepton channel, reject pairings with $\cos(\theta^*) > 1$, then choose the pairing that minimizes sum of ΔR separations for the two l-b pairs

- ► Use $\cos(\theta^*) = 2m_{lb}^2/(m_{top}^2 m_W^2) 1$ to define a control sample. ■ Signal region is $\cos(\theta^*) < -0.6$, while control region is $\cos(\theta^*) > -0.2$ for
 - single-lepton and $cos(\theta^*) > -0.4$ for double-lepton analysis

Final discriminating variable is m_T^H:

$$(m_{\rm T}^{\rm H})^2 = \left(\sqrt{m_{\rm top}^2 + (\vec{p_{\rm T}}^l + \vec{p_{\rm T}}^b + \vec{p_{\rm T}}^{\rm miss})^2} - p_{\rm T}^b\right)^2 - \left(\vec{p_{\rm T}}^l + \vec{p_{\rm T}}^{\rm miss}\right)^2$$

For dilepton channel, maximize m_T^{H} over \dot{p}_{H+} and p_v subject to constraints from top masses and p_T^{miss}

W. Quayle

Charged Higgs (4)

ATLAS-CONF-2011-151

 ▶ Backgrounds with jets misidentified as leptons are measured using a control sample with loosened isolation cuts
 ▶ Above: the limits on BR(t→bH⁺) from the single- (left) and double-lepton channel (right)
 ▶ Right: the limit obtained combining the 1-lepton and 2lepton channels

W. Quayle

ATLAS-CONF-2011-163

Above: overview of channels included in the combination
Main updates since previous combination:

- Lumi used for $H \rightarrow ZZ \rightarrow 4l$ and $H \rightarrow \gamma\gamma$ increased to 4.8 fb⁻¹ and 4.9 fb⁻¹
- $H \rightarrow WW \rightarrow l_{\nu}l_{\nu}$, $H \rightarrow ZZ \rightarrow ll_{\nu}\nu$, and $H \rightarrow ZZ \rightarrow llqq$ updated to 2.1 fb⁻¹

• Addition of $H \rightarrow WW \rightarrow l_{\nu}qq$

Exclude Standard Model Higgs boson at 95% CL for m_H in ranges 112.7-115.5 GeV, 131-237 GeV, or 251-453 GeV.
 Interesting feature at around 125 GeV

ATLAS-CONF-2011-163

Right: the "local" probability to see an excess as significant if there is only background, as a function of m_H

- "Local" means that the calculation was performed for each m_H assuming that m_H was known a priori to be the true m_H
- "Look-elsewhere" effect reduces the significance 10⁻⁶ compared to the plot. 110 Probability to see such an excess anywhere is about 1%

The excess is driven by the features in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4l$ shown earlier, with a small contribution from $H \rightarrow WW \rightarrow l_V l_V$

Above: the preferred value of the signal strength from the combined fit, as a function of $m_{\rm H}$

Left and right plots are identical except for the range of the x-axis

 Preferred signal strength near 125 GeV is compatible with Standard Model expectation, but it is an upward fluctuation

Summary

LHC has had an amazingly successful run this year, and we have greatly extended the reach of our Higgs searches over the last few months

- Range of most likely masses for Standard Model Higgs is now 115.5-131 GeV
- No convincing sign of a Higgs yet, but there is an interesting feature at about 125 GeV.
 - Present in both $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 41$
 - ~1% probability to see a fluctuation like this anywhere if there is only background
 - Too early to draw a conclusion about this excess
 - ~20 fb-1 next year would allow us to make firm conclusions (discovery or exclusion) over the full mass range

The next year should be very interesting for the Higgs search

Backup

$H {\rightarrow} WW {\rightarrow} l_{\mathcal{V}} l_{\mathcal{V}}$

	Signal	WW	W + jets	$Z/\gamma^* + \text{jets}$	tī	tW/tb/tqb	$WZ/ZZ/W\gamma$	Total Bkg.	Observed
Jet Veto	36 ± 8	524 ± 52	84 ± 41	174 ± 169	42 ± 14	32 ± 8	15 ± 4	872 ± 168	920
$ {\bf P}_{\rm T}^{\ell\ell} > 30 {\rm ~GeV}$	34 ± 7	467 ± 45	69 ± 34	30 ± 12	39 ± 14	29 ± 8	13 ± 4	648 ± 96	700
$m_{\ell\ell} < 50 \text{ GeV}$	26 ± 6	118 ± 15	21 ± 8	13 ± 8	7 ± 4	5.8 ± 1.8	1.9 ± 0.6	166 ± 23	199
$\Delta \phi_{\ell\ell} < 1.3$	20 ± 4	91 ± 12	12 ± 5	9 ± 6	6 ± 3	5.8 ± 1.8	1.7 ± 0.6	125 ± 19	149
$0.75 m_H < m_T < m_H$	14 ± 3	40 ± 5	8 ± 3	4 ± 9	1.8 ± 1.2	2.0 ± 1.2	0.9 ± 0.4	56 ± 10	07
ee	1.8 ± 0.4	4.9 ± 0.8	1.5 ± 0.7	2 ± 3	0.2 ± 0.3	0 ± 0	0.04 ± 0.03	8.2 ± 0.9	7
eμ	7.4 ± 1.6	21 ± 3	4.5 ± 1.8	0 ± 0	1.1 ± 0.5	1.4 ± 0.9	0.6 ± 0.4	28 ± 7	29
μμ	5.2 ± 1.1	13.8 ± 1.9	1.9 ± 1.1	2 ± 9	0.5 ± 0.8	0.6 ± 0.6	0.32 ± 0.10	19 ± 2	31

The excess in $H \rightarrow WW \rightarrow l\nu l\nu$ is driven by the $\mu\mu$ channel. There is good agreement between the observation and the expected background for ee and $e\mu$.

Above: expected and observed yields in H+0j for m_H=130 GeV.
 Below: the same for H+1j.

	Signal	WW	W + jets	$Z/\gamma^* + \text{jets}$	tt	tW/tb/tqb	$WZ/ZZ/W\gamma$	Total Bkg.	Observed
1 jet	16 ± 3	193 ± 20	38 ± 21	74 ± 65	473 ± 124	174 ± 26	14 ± 2	967 ± 144	952
b-jet veto	16 ± 3	188 ± 19	35 ± 19	73 ± 61	174 ± 49	66 ± 11	14.0 ± 2.0	549 ± 82	564
$P_{\rm T}^{\rm tot} < 30 { m ~GeV}$	13 ± 2	154 ± 16	18 ± 9	38 ± 32	106 ± 30	50 ± 9	9.7 ± 1.5	376 ± 58	405
$Z \rightarrow \tau \tau$ veto	13 ± 2	150 ± 17	18 ± 8	34 ± 23	102 ± 23	48 ± 8	9 ± 2	361 ± 31	388
$m_{\ell\ell} < 50 \text{ GeV}$	10 ± 2	33 ± 5	3.3 ± 1.4	8 ± 7	20 ± 7	11 ± 3	1.8 ± 0.5	77 ± 11	90
$\Delta \phi_{\ell\ell} < 1.3$	7.6 ± 1.7	25 ± 4	2.1 ± 1.0	4 ± 6	17 ± 6	9 ± 3	1.5 ± 0.4	60 ± 10	72
$0.75 m_H < m_T < m_H$	4.9 ± 1.1	8.9 ± 1.9	1.1 ± 0.5	2 ± 3	4.7 ± 1.3	1.8 ± 0.9	0.6 ± 0.3	19 ± 3	27
ee	0.46 ± 0.11	1.0 ± 0.3	0.20 ± 0.09	0.1 ± 0.2	0.6 ± 0.3	0 ± 0	0.07 ± 0.06	2.0 ± 0.7	3
$e\mu$	2.9 ± 0.7	5.1 ± 1.2	0.7 ± 0.3	0.6 ± 1.1	2.7 ± 1.0	0.8 ± 0.5	0.39 ± 0.20	10 ± 2	13
$\mu\mu$	1.6 ± 0.4	2.8 ± 0.6	0.3 ± 0.3	1.7 ± 0.8	1.4 ± 0.9	1.1 ± 0.9	-0.09 ± 0.07	7 ± 2	11

W. Quayle

SLAC Seminar, 14 December 2011

W. Quayle

SLAC Seminar, 14 December v2 099V]

SLAC Seminar, 14 December 2011

LHC & ATLAS

Inner Tracker: B=2T, Si. Pixels/strips & Transition Radiation Tracker, σ/p_T=0.05% p_T(GeV)⊕1%
EM Calo: Pb-LAr accordion, σ/E=10%/√E⊕0.7%
Hadronic Calo: |η|<1.7 Fe/Scintillator; 1.3<|η|<4.9 Cu/W/LAr; σ/Ejet=50%/√E⊕3%
Muon spectrometer: Air-core toroids and gas-based muon chambers. σ/p_T=2% at 50 GeV to 10% at 1 TeV

Electron ID Efficiency

► Electron ID efficiency is checked using Z→ee, J/ψ→ee, and W→ev samples (left)
 ■ Typical uncertainty: 6% for p_T~7 GeV, <2% for p_T~50 GeV

Variation of efficiency with pileup is well-modeled by MC
 The cuts themselves have not yet been re-optimized for high pileup

Muon ID Efficiency

 Improved alignment decreases mass resolution of Z→µµ from 2.89±0.1 GeV during spring 2011 to 2.45±0.1 GeV during summer 2011 (left)
 MC (perfect): 2.31±0.1 GeV

Reconstruction efficiency is >95% over 4<p<100 GeV Very stable against pileup (right)