

3D Sensors

Julia Thom-Levy
Cornell University
SiD Detector Workshop, SLAC
Dec.14th, 2011

Outline

- Vertically integrated circuit technology (3D-IC)
 - Reminder: TSVs, thinning, bonding,...
 - Status of 3D-IC designs completed by FNAL
- 2. Toward larger area fully active modules
 - Active edge sensors as part of a 3D assembly
 - Initial work on active edge sensor simulations
 - tiles for the SiD forward disks

3D-IC technology

2 or more layers ("tiers") of active semiconductor devices that have been thinned, bonded and vertically interconnected to form a monolithic circuit

3D-IC technology

- Industry is moving toward 3D to improve circuit performance.
 - Reduce R, L, C for higher speed
 - Reduce chip I/O pads (less dead area)
 - Technology of each layer can be separately optimized
 - Reduce interconnect power and crosstalk
 - Can increase complexity- more transistors per cm²
 - Process now accessible commercially
- excellent technology to match the tight requirements of high pixel resolution, low power, and low mass for SiD vertex detector

Emerging key technologies

- Through-Silicon-Via etching (TSV) and metallization
- Wafer thinning (<25μm)
- Precision alignment (<1μm)
- (fusion) bonding of thinned wafers to form a monolithic unit

3D circuits for HEP at FNAL

- 2006: FNAL participates in 2 multi-project-wafer runs (MPW), organized by MIT-LL and submitted the VIP (vertically integrated pixel) chip, driven by ILC specs for vertex pixels. Proof of 3D principle
 - MIT-LL: 3 tier fully depleted SOI process
 - Tiers communicate through TSV's
- In 2009, FNAL initiated and organized the first 3D-IC MPW for HEP and related fields
 - Standard CMOS foundry process (0.13 μm), wafers fabricated by Global Foundries
 - 3D processing and stacking done by Tezzaron (IL)
- FNAL contribution to the MPW:
 - VICTR chip (vertically integrated CMS tracker for sLHC)
 - VIP2b (ILC pixels, 8-bit digital time stamp)
 - VIPIC (x-ray spectroscopy)

3D demonstrator chips

VIP1 and VIP2a chips using MIT-LL process

VIP2b uses standard CMOS foundry process:

The VIP2b design

First chips from the 3D multiproject run were received in September 2011:

 Wafer was back-thinned, and back Al pads were deposited, then singulated and distributed

Testing of stacked devices: first results

Some 3D circuits performed properly, but problems with pixel interconnects. Cause: substantial misalignment of top and bottom layers

More wafers expected to arrive with the problem fixed

Additional 12 wafers started at Global Foundries at Tezzaron expense – due in January 2012.

SEM picture courtesy of P. Siddons BNL

VIP2b (analog) test results

Pulse Response

Noise

Csel	Cin added	Cin + Cinstray	Noise at Inv. Out (mV)	Noise at Inv. Out (e)	Noise at Int. Out (mV)	Noise at Int. Out (e)
111	0	12.5 fF	2.26 mV	16 e	0.74 mV	19 e
110	4 fF	17 fF	2.58	18	0.79	20
101	8	21.5	2.84	20	0.82	21
100	12	26	3.11	22	0.87	22
011	16	30.5	3.38	24	0.93	23
000	28	44	4.09	29	1.04	26

Bandwidth not very

Bandwidth varies

with Cin

Reasonable pulse response and low noise on VIP2b (analog)

VICTR (Vertically Integrated CMS Tracker) chip

2 tier 3D device with readout and coincidence circuit. Will be bonded to strip sensor planes, separated by 1mm thick "interposer" that transports signals through vias

- locally collects hits from 2 sensors, finds hit pairs with p_t>2GeV for trigger decision on the detector
- transfers data to vector forming circuit, which rejects track vectors with low pt to reduce data rate before transferring data off the detector

VICTR testing: first results

We have been able to test most of the VICTR chip

- The two tiers of the VICTR chip could be tested individually only, but chip seems to work well
- Expect that full chip will be OK

Labview FPGA Test system at FNAL and Cornell

Testing the VICTR chip: time walk measurements, threshold scans and tuning, investigating crosstalk, etc

bonding to sensors

- Next: bond radiation sensors to the 3D-IC chips
 - VICTR (sCMS track trigger): 2 sensors, "phi" and "z" tiers
 - VIP2b (ILC pixels): array of 192 x 192 pixels, pitch: 24 μm^2
- Sensors were fabricated at BNL, following rules of special wafer bonding process
 - tested, look good
- Bonding technique: oxide-to-oxide direct bonding, ("DBI"), process developed by Ziptronix

BNL Sensor Wafer

Summary Part 1

- Active program of 3D-IC applied to HEP
 - FNAL pioneered 3D-IC application for HEP
- Design and assembly of 3D devices is challenging, but
 - demonstrator chips work well
 - current problems with misalignment are being worked out
 - other (more difficult) parts of processing fully proven: back-grinding down to TSVs' tips, deposition and patterning of back Al, etc
- Commercial Si brokers have made 3D chips available
 - Significant step towards making this technique viable for detector applications

The next step: larger area modules

- Size of 3D devices I've talked about so far is determined by reticule size
 - Sub-micron CMOS electronics dictates ~2x3 cm
- If we want to bond to a larger area sensor there is a very serious issue of yield (i.e. many small chips bonded to large sensor)
 - Smaller sensors are problematic because saw edges cause leakage currents- active area constrained to distance from the edge 2-3 times the thickness, causing dead area
- How to make larger area fully active modules?
 - active edge sensors

Active Edge Sensors

- Active edge technology was developed as part of 3D detector R&D and uses the same deep etching and implantation technologies
- Ion etching can produce an "atomically smooth" edge small leakage and sensitive to within a few microns of the edge (compare to 3x thickness of conventional sensors due to leakage currents)

Eraenen, Kalliopuska et al,NIM A 607 (2009) 85-88,

VTT (Tech.Research Center, Finland) has demonstrated devices mounted on silicon-on-insulator substrates which allows processing thin sensors

An integrated sensor ROIC structure

Idea: oxide bond edgeless sensors with 3D readout chips to provide integrated sensor/readout tiles that can be tested before assembly into a module (→ yield)

An integrated sensor ROIC structure

- FNAL has an order with VTT to fabricate active edge sensors and an order with Ziptronix for oxide bonding
 - First step: use these with 3D test wafers to demonstrate the concept of fully active tiled arrays which could achieve high yields and small dead areas
- starting p-on-n sensor design phase.
- our group at Cornell is doing simulation work to support the sensor design phase:
 - investigate leakage current, breakdown voltage, interstrip resistance and other electrical properties of the sensor
 - how do they depend on the placement of p-stops, strip pitch, etc

Started with microstrip detector detailed in NIM A 607 (2009) 85-88

The Simulation

SILVACO

- Commercial Silvaco software, a process and device simulation, places a negative voltage on the base of the wafer and solves Maxwell's equations along with a charge conservation equation on a grid of points to approximate the true solution.
- The solution includes information on voltage, electric field, electron and hole density, current density, etc for each grid point
- The simulated volume is 197 μ m (wafer thickness) by 280 μ m (including the first three strips) by 100 μ m

Electric field, Potential

E field (0-10kV/cm)

Potential (0-20V)

IV curves

Initial studies show that breakdown voltage does not vary much if we change edge distance and p-stop placement by 10's of microns

More about simulation work

- Also investigating of interstrip resistance and leakage currents
 - Important to correctly model the device in 3 dimensionsstill working on it.
- Once a realistic simulation is established, can use it to guide design of sensor.

Apply voltage on first strip to determine interstrip resistance: compare to experimental values.

Forward Disks

 Forward disks for SiD are a good example of how tiles can be used. Two or three types of tiles can be used to form a wedge – wedges are then assembled to form disks.

 Active edge trenches can be any shape – generate needed chip profiles.

Summary Part 2

- Active program of 3D-IC applied to HEP
 - FNAL pioneered 3D-IC application for HEP
- Design and assembly of 3D devices is challenging, but demonstrator chips successful overall
- Plans for bonding to edgeless sensors, design and simulations underway
- Forward disks at SiD are a good example of how integrated sensor/readout tiles can be used to form suitable dead-space less active pixel detectors.

Backup Material

Fabrication Flow

Start with separate readout and sensor wafers

Trenches

Active edge Sensor wafer

Form trenches in SOI sensor wafer

Sensor

Handle wafer

3D ROIC wafer

Wafer bulk

Circuitry

Through silicon vias

Active Edge Sensors

- We have an order with VTT to fabricate active edge sensors and an order with Ziptronix for oxide bonding
- These would be used with 3D test wafers to demonstrate the concept of fully active tiled arrays which could achieve high yields and small dead areas
- Starting p-on-n sensor design phase.
- Cornell is doing simulation work to support the design phase

Fermilab MPW: VICTR

- Vertically Integrated CMS Tracker
- VICTR is response to need of much higher selectivity for trigger at HL LHC

Proposed idea: to discriminate on tracks of p_T exceeding threshold (bent of track in B-field)

Track Trigger Collaboration Long Strip Sensors Interposer • • • • • • • • • Short Strip Sensors Serial RO of all top & bottom strips + coincidence Long Strip Sensors **Bump-bonding**, Interposer **UC Davis** Short Strip Sensors Interposer: Cornell, AllVia, Tezzaron Interposer Sensors / edgeless sensors: ••••• IC design: **BNL, VTT LBNL** Short Strip Sensors 3D ASICs with TSVs: **Tezzaron** DBI/fusion bonding: Ziptronix, **Short Strip Sensors** T-micro, RTI

Top Chip

Circuit layers

Bottom Chip

Top bump bond interconnect **3D Readout chip** detector wafer support wafer

FNAL's 3D MPW approach

Single mask, top and bottom chips on the same reticule:

VICTR (Vertically Integrated CMS Tracker) chip

