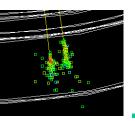


DBD Planning: ECal

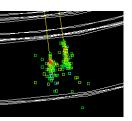

R Frey, M Stanitzki

LOI section still a good starting point

Guiding principles based on optimizing physics performance constrained by technological feasibility and cost

- multi-jet final states (PFA)
- tau id and analysis
- photons (4-vector)
- electron id
- Bhabhas and Bhabha acollinearity
- Hermiticity

⇒ Imaging ECal


"official" guidance on DBD content

Outline of Detailed Baseline Design Updated 6/30/11 A0057

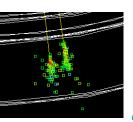
Electromagnetic Calorimetry

- Introduction (Requirements, capabilities)
 - General Layout
 - Physics Rationale
 - changes since the LoI (mainly R&D)
- Global ECAL design
 - motivate Layer thickness (plot)
 - description of mechanical design (we are missing design for endcap possibly Marco can work on this?)
 - optimization of the layout
- Baseline Technology
 - Describe Sensors (we need design for size/shape of endcap sensors
 - KPix Readout (there will be a separate Electronics and DAQ outline section. Here we talk about the specifics of KPiX for the
 - ECal: bonding chip/sensor/cable)
 - Calibration & Alignment
 - Test beam results from KPiX (here we anticipate having results from a full depth/one sensor wide module exposed to the SLAC test beam)
- MAPS option (need to check with Marcel S. re status)
 - describe chip
 - some test beam results
- Physics performance specific to ECal (such as photon vertexing,...) (There will be a separate Physics section of the DBD, but ECal specific items should go locally here)

the biggie

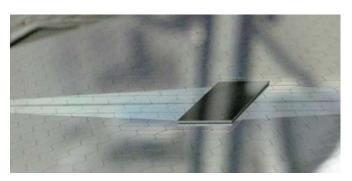
Completing the initial R&D

goals for the baseline design

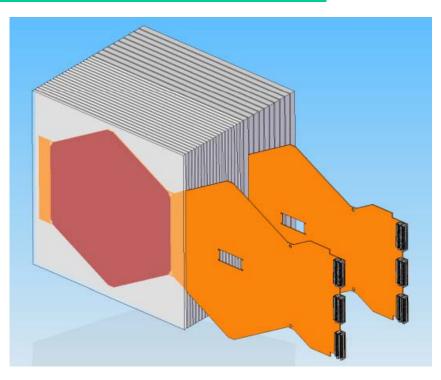

Introduction (Requirements, capabilities)
 General Layout
 Physics Rationale

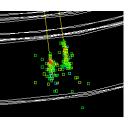
changes since the LoI (mainly R&D)

- Global ECAL design
 - motivate Layer thickness (plot)
 - description of mechanical design (we are missing design for endcap possibly Marco can work on this?)
 - optimization of the layout
- Baseline Technology
 - Describe Sensors (we need design for size/shape of endcap sensors
 - KPix Readout (there will be a separate Electronics and DAQ outline section. Here we talk about the specifics of KPiX for the
 - ECal: bonding chip/sensor/cable)
 - Calibration & Alignment


Test beam results from KPiX (here we anticipate having results from a full depth/one sensor wide module exposed to the SLAC test beam)

- MAPS option (need to check with Marcel S. re status)
 describe chip
 - some test beam results
- Physics performance specific to ECal (such as photon vertexing,...) (There will be a separate Physics section of the DBD, but ECal specific items should go locally here)


Completing the R&D

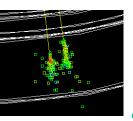


- Goal: Complete the component R&D (done), build a test stack, and evaluate performance in a test beam.
- See Mani Tripathi's talk yesterday...
- If we clear the bump-bonding hurdle soon (!), we should have a module ready for (SLAC) test beam by early summer.

missing

Introduction (Requirements, capabilities)
 General Layout
 Physics Rationale
 changes since the LoI (mainly R&D)

Endcaps!
Only initial mechanical drawings so far (Marco)


- Global ECAL design
 motivate Layer thickness (plot)
 description of mechanical desig
 optimization of the layout
 - description of mechanical design (we are missing design for endcap possibly Marco can work on this?)
 - Baseline Technology
 - Describe Sensors (we need design for size/shape of endcap sensors

KPix Readout (there will be a separate Electronics and DAQ outline section. Here we talk about the specifics of KPiX for the ECal: bonding chip/sensor/cable)

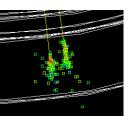
Calibration & Alignment

Test beam results from KPiX (here we anticipate having results from a full depth/one sensor wide module exposed to the SLAC test beam)

- MAPS option (need to check with Marcel S. re status)
 describe chip
 some test beam results
- Physics performance specific to ECal (such as photon vertexing,...) (There will be a separate Physics section of the DBD, but ECal specific items should go locally here)

swept under the rug

Introduction (Requirements, capabilities)
 General Layout
 Physics Rationale
 changes since the LoI (mainly R&D)

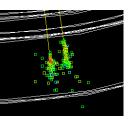

Calibration and alignment: Needs to be discussed in DBD

- Global ECAL design
 - motivate Layer thickness (plot)
 - description of mechanical design (we are missing design for endcap possibly Marco can work on this?)
 - optimization of the layout
- Baseline Technology
 - Describe Sensors (we need design for size/shape of endcap sensors
 - KPix Readout (there will be a separate Electronics and DAQ outline section. Here we talk about the specifics of KPiX for the ECal: bonding chip/sensor/cable)

Calibration & Alignment

Test beam results from KPiX (here we anticipate having results from a full depth/one sensor wide module exposed to the SLAC test beam)

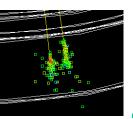
- MAPS option (need to check with Marcel S. re status)
 describe chip
 some test beam results
- Physics performance specific to ECal (such as photon vertexing,...) (There will be a separate Physics section of the DBD, but ECal specific items should go locally here)


technical option

Introduction (Requirements, capabilities)
 General Layout
 Physics Rationale
 changes since the LoI (mainly R&D)

MAPS option was discussed in LOI. More or less in DBD??

- Global ECAL design
 - motivate Layer thickness (plot)
 - description of mechanical design (we are missing design for endcap possibly Marco can work on this?)
 - optimization of the layout
- Baseline Technology
 - Describe Sensors (we need design for size/shape of endcap sensors
 - KPix Readout (there will be a separate Electronics and DAQ outline section. Here we talk about the specifics of KPiX for the
 - ECal: bonding chip/sensor/cable)
 - Calibration & Alignment
 - Test beam results from KPiX (here we anticipate having results from a full depth/one sensor wide module exposed to the SLAC test beam)
- MAPS option (need to check with Marcel S. re status)
 describe chip
 some test beam results
- Physics performance specific to ECal (such as photon vertexing,...) (There will be a separate Physics section of the DBD, but ECal specific items should go locally here)


would be nice

Introduction (Requirements, capabilities)
 General Layout
 Physics Rationale
 changes since the LoI (mainly R&D)

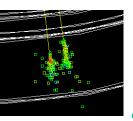
physics related performance studies

- Global ECAL design
 - motivate Layer thickness (plot)
 - description of mechanical design (we are missing design for endcap possibly Marco can work on this?)
 - optimization of the layout
- Baseline Technology
 - Describe Sensors (we need design for size/shape of endcap sensors
 - KPix Readout (there will be a separate Electronics and DAQ outline section. Here we talk about the specifics of KPiX for the
 - ECal: bonding chip/sensor/cable)
 - Calibration & Alignment
 - Test beam results from KPiX (here we anticipate having results from a full depth/one sensor wide module exposed to the SLAC test beam)
- MAPS option (need to check with Marcel S. re status) describe chip
 - some test beam results
- Physics performance specific to ECal (such as photon vertexing,...) (There will be a separate Physics section of the DBD, but ECal specific items should go locally here)

possible performance results

Photons

- Reconstruction efficiency in jets (in taus), e.g. efficiency as a function of separation from charged tracks or other photons
- Photon vertexing
- (energy resolution)


Taus

• Identification of π° (separate the decay modes for tau pol)

Jets

Presumably already included in PFA performance in physics processes

Who will do it?

summary

 Demonstrate the feasibility of the baseline ECal by completing the fabrication of the R&D module and getting some test beam results!

- Everything else (hopefully taken up in parallel):
 - Endcaps (mechanical and sensor "design")
 - Calibration and alignment
 - MAPS
 - Performance studies