

Tracker DBD

Bill Cooper Fermilab

· SiD ·

- Brief description of the baseline tracker design (2 pages)
- Critical R&D, including status, engineering, future needs, resources, and timeline (9 pages) Includes:
- Development of KPIX chips and associated sensors:
 - As with ECal, failure of the oxide between metal layers on HPK prototypes to stand up to bonding processes has limited progress.
 - Cannot attach KPiX or prototype cable to test readout concept
 - Have not succeeded with more gentle processes for KPiX
 - Davis has managed to attach cables with solder bumps. Would require redesigned cable: need to focus some attention on this.
 - Fixes are being sought in conjunction with ECal:
 - Enlisting "the pros" (IZM) for under bump metallization (UBM) and solder bonding.
 - HPK can now do thicker oxide and UBM on future parts: requires additional resources (\$\$\$).
 - New bonding capability at SLAC (Finetech Lambda)

- Verification is needed of an acceptable level of cross-talk with the double-metal sensor lay-out, but that can't proceed until the connection problems have been solved.
- 3-D work continues within SiD:
 - 3-D sensors represent an alternative to the baseline design.
 - Technically challenging:
 - Improvement in the yield from a multi-step fabrication process is needed.
 - R&D to develop 3-D technology applies to the detectors for other experiments and has applications outside HEP.
 - Resource support has been reasonable.
 - The DBD could include a conceptual design in 3-D using demonstrated processes and known power consumption.
 - The 3-D work would need to proceed rather well for this to be realized within the DBD time frame.

· SiD ·

- Sensors with z-readout:
 - Bruce Schumm and others have worked on sensors with readout at both strip ends.
 - Based on electrical mock-ups, the relative signal at the two ends should give z-position with a precision ~ 6-7 mm.
 - Prototype sensors will be needed to continue this R&D.
- Development of sensor modules for the barrels:
 - A rapid prototyping machine at SLAC could be used to produce support structures for test beams or module models that can be handled.
 - The rapid prototype models would replicate CAD models used for design development.
 - True prototypes would test design details and shouldn't be neglected.
- Development of sensors, modules, and overall support structures for the disks:
 - Module and sensor concepts need to be developed.
 - Overall support structures are understood from a concept point of view.
 - A prototype before the DBD would be nice, but may not be realistic.

- For both the barrels and disks, we need:
 - Studies of signal to noise and crosstalk
 - Studies of pulsed power, power delivery, and associated vibrations based upon realistic prototypes
 - The development of module fabrication techniques
 - Development of cabling
 - Prototype cables for wire bonding to the sensor have been designed and obtained (University of New Mexico).
 - Extension cables for runs from the barrel modules to the ends of barrels are under development.
 - Similar parts will be needed for the disks.
 - Studies of heat removal, particularly for the disks
 - The cooperative effort with CLIC has been beneficial.
 - Testing appears to require full sized portions of the tracker (perhaps an octant of two layers) with realistic representations of power sources.
 - It may be realistic to get that done with dummy heat sources.

- Studies of alignment precision and monitoring
 - Please see Keith Riles' talk and the slide from him (later) for an indication of revitalization and a ray of hope.
- Re-statement of the baseline technology and the expected status of options (0.5 page)
- Status and the expected evolution of the tracker in the SiD simulation (0.5 page)
 - Progress on tracker reconstruction software, in conjunction with CLIC, has been good.
- Additional tools (desired but not essential):
 - Fully Kalmanized track finding, fitting (and vertexing).
 - More detailed accounting of material traversed by individual tracks.

· SiD ·

DBD Outline (Tracker)

- Additional tracker studies (desired but not essential):
 - More complete studies with backgrounds and realistic time tagging.
 - Studies of sensitivity to misalignment, field non-uniformity.
 - Studies of sensitivity to holes/inefficiency, background levels.
 - Optimization studies: #layers, strip length, endcap stereo angle etc.
 - Pixel tracker option
- Total: 12 pages

Comments:

- Progress has been limited by the number of people and the fraction of effort they can contribute.
- Funding has roughly matched the people resources, and is a significant issue in some areas.
- Let's hope both improve in the coming year.

What we have and ongoing work:

Overall Layout

VTX in side elevation for completeness

Barrel Modules (Nelson)

• A bit out of date, but illustrates the concept

Cabling (Seidel)

Pigtail Cable on a Sensor Cable is just laying on the sensor & is not attached

December 14,2011 Pigtail Cable 11

Sensors with Z-position Capability (Schumm)

Sensors with Z-position Capability (Schumm)

Calculating Longitudinal Position Resolution ASCIPP

$$P = \frac{Q_R}{Q_L + Q_R} = \frac{\alpha}{1 + \alpha} = \text{fractional position}$$

$$\alpha = \frac{Q_R}{Q_L}$$
Anti-correlation factors in here
$$\sigma_{\alpha} = (\alpha) \left\{ \left(\frac{\sigma_R}{Q_R} \right)^2 + \left(\frac{\sigma_L}{Q_L} \right)^2 - 2\rho \left(\frac{\sigma_R}{Q_R} \right) \left(\frac{\sigma_L}{Q_L} \right) \right\}^{\frac{1}{2}}$$

$$\sigma_{P} = \left| \frac{dP}{d\alpha} \right| \sigma_{\alpha} = \left(\frac{1}{\left(1 + \alpha \right)^{2}} \right) \sigma_{\alpha}$$

- We measure σ_p to be ≈6.1mm for a 10cm, $600k\Omega$, 12.7pF silicon strip detector
- Radeka predicts σ_p to be ≈6.5mm for a 10cm, 600kΩ, 12.7pF silicon strip detector.
- Asymmetry in σ_P due to slight non-linearity in 2.5T shaping time choice as well as measurement uncertainty.

67	Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9
Q _R [fC]	0.32	0.64	0.95	1.28	1.60	1.95	2.33	2.77	3.23
Q _L [fC]	3.24	2.75	2.33	1.94	1.60	1.26	0.94	0.65	0.32
P	0.090	0.189	0.290	0.400	0.500	0.607	0.713	0.810	0.910
$\sigma_{R} = \sigma_{L}[fC]$	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24
$\sigma_{_{\rm P}}$	0.0598	0.0609	0.0615	0.0616	0.0617	0.0618	0.0617	0.0603	0.0600

Jerome K. Carman

Tracker/magnet alignment R&D (Riles)

- Michigan group (Riles, Yang, Chen) working on frequency-scanned interferometry (FSI) alignment of tracking elements and final-focus quadrupole magnets
 - Resumed R&D in 2011 after long funding drought
 - Have established 6-channel testbed in Michigan lab
 - Recently verified sub-micron precision on x-y displacement

Plans: (short term)

- Expand to 8 channels, carry out 3-D reconstruction
- Increase dynamic range for initial misalignment tolerance
- Full FSI simulation with bootstrapping across SiD detector and integration of tracker & magnet alignment monitoring

Plans: (long term)

- Reduce size & material of retroreflectors & launchers
- Make transition from optical to infrared (exploit telecom technology)
- Higher bandwidth measurements

Power delivery and vibrations

- KPIX chips are inherently compatible with pulsed power and that has been verified.
- Vibration studies are planned in conjunction with the development of air cooling, DC-DC conversion, and pulsed power techniques.
- Power delivery needs continuing attention.
 - DC-DC conversion and serial power are the two known options.
 - Of the two, DC-DC conversion is being pursued more actively...
 - Both can reduce total power dissipation, allow cable contributions to material to be reduced, but add their own material contributions.
 - A proper balance should be struck among these.
 - Please see the talk by Satish Dhawan on DC-DC conversion.

Figure 1: Conversion Current Density for a four phase 120 A, 12 Vin to 1.2 Vout buck converter vs switching frequency.

M.A. Briere IEDM 2010

Tentative Power Conditioner Locations

