

Forward Calorimetry DBD Activities

SiD Workshop December 14-16 2011

Bruce Schumm UCSC/SCIPP

Activities Underway

• Measurement of stau in the degenerate regime (U. Nauenberg et al)

BeamCal Shower reconstruction for different
beam delivery scenaria

Bean Chip Development

Radiation Damage Studies

Stau Production and

Beam Cal

Reconstruction

Colorado Study

WMAP data prefers "co-annihilation" configuration with nearly-degenerate LSP (χ^0) and NLSP (stau)

Dominant two-photon background rejected by identifying e[±] in BeamCal

Model	B'	C'	D'	G'	ľ	SPS1a'
W^+	80.4	80.3	80.3	80.3	80.3	80.4
h^0	110.0	114.1	115.3	114.5	113.9	112.1
H^0	377.7	587.3	755.0	525.9	440.0	424.7
A^0	377.2	586.9	754.7	525.8	440	424.5
H^+	386.0	592.7	759.3	532.2	447.8	432.2
\widetilde{d}_L	565	863.4	1106.4	818.3	780.6	566.7
\widetilde{d}_R	541.9	827.1	1058.5	784.5	749.7	543.7
\widetilde{u}_L	559.5	859.8	1103.6	814.5	776.6	561.3
\widetilde{u}_R	542.2	829.4	1062.2	786.4	751.3	544.0
\widetilde{s}_L	565.0	863.4	1106.4	818.3	780.6	566.7
\widetilde{s}_R	541.9	827.1	1058.5	784.5	749.7	543.7
\widetilde{c}_L	559.5	859.8	1103.6	814.5	776.6	561.3
\widetilde{c}_R	542.1	829.4	1062.2	786.4	751.3	544.0
\widetilde{b}_1	514.2	788.2	1013	735.7	674.3	503.4
\widetilde{b}_2	542.4	825.2	1053.3	776.9	728.1	542.7
$\widetilde{t_1}$	410.1	648.1	852.0	613.5	580.1	365.9
\widetilde{t}_2	583.2	841.6	1049.2	795.3	748.6	581.8
\widetilde{e}_{L}	186.1	287.0	372.8	282.2	297.7	189.7
\widetilde{e}_R	119.9	178.3	230.1	187.2	223.1	125.3
$\tilde{\nu}_e$	168.4	275.7	364.1	270.4	286.5	172.4
$\widetilde{\mu}_L^-$	186.2	287.0	372.8	282.2	297.8	189.7
$\widetilde{\mu}_R^-$	119.9	178.3	230.1	187.1	/222.8	125.2
$\widetilde{\nu}_{\mu}$	168.4	275.7	364.1	270.4	286.4	172.4
$\widetilde{\tau_1}$	110.6	170.6	223.9	158.6	144.6	109.0
$\tilde{\tau}_2^-$	190.2	289.0	373.5	289.0	309.3	194.4
$\widetilde{\nu}_{\tau}$	167.8	274.8	363.0	266.8	273.8	170.5
\widetilde{g}	603.3	930.5	1196.2	877.2	824.9	604.0
$\widetilde{\chi}_{1}^{0}$	96.5	161.0	216.4	150.9	140.8	97.6
$\tilde{\chi}_2^0$	178.6	303.5	413.5	284.5	265.1	183.5
χ_3	-348.2	-527.6	-674.3	-493.7	-461.3	-400.4
$\widetilde{\chi}_{4}$	367.5	542.6	680.2	507.5	475.0	413.9
χ_1	178.1	303.5	413.7	284.5	265.2	183.3
χ_2^+	368.4	543.1	682.5	508.6	476.4	415.3

BeamCal Electron Detection Efficiency (1x BkGd)

[After] BeamCal Veto [Before]

SCIPP: Explore different beam conditions?

Colorado:Mean background is x100 mean signalSCIPP:Mean background is x500 mean signalHave been unable to understand what changed

BBANASIC

Development

The Bean Prototype: System-Level Design

- 180-nm TSMC processFully independent channels
- Digital memory to store 32 channels x 2820 x 10-bit results per ASIC
- Precharge circuit for the charge-sensitive amplifier (CSA) to maximize output swing
 - CSA precharger doubles as on-chip pulser for electronics calibration
- SC adder followed by a dedicated ADC
- Gated reset for quick baseline restoration
 - This has noise consequences in DCal mode

BEAN ASIC: Next Steps

- Incremental improvements to filtering strategy
- Scale from 3 to 32 channels
- Digital back-end (switched capacitor array) for storage of full beam-spill for quiescent readout
- Abusleme has obtained funding from Chilean government; SCIPP has some funding and interested engineer
- Structure in place to proceed to 2nd prototype design in ~6 months (?)

Some support requested (confirm specs)

Radiation

Damage in

Electromagnetic

Showers

The Issue: ILC BeamCal Radiation Exposure

ILC BeamCal:

Covers between 5 and 40 miliradians **Radiation doses up** to 100 MRad per year **Radiation initiated by** electromagnetic particles (most extant studies for hadron induced)

EM particles do little damage; might damage be come from small hadronic component of shower?

Hadronic Processes in EM Showers

Status: Thermal prototype under testing at SCIPP

Run Plan

To acheive uniform illumination over 0.25x0.75 cm region (active area of SCIPP's charge collection measurement apparatus), must raster in 0.05cm steps over 0.6x1.5 cm:

$$1 GRad \approx \frac{650}{I_{beam}(nA) \bullet E_{beam}(GeV)} hours$$

e.g. 100 MRad at 1 nA 5 GeV e⁻ → ~ 10 Hours

Will start with stepped runs up to 100 MRad accumulation. Under discussion w/ ESTB (Karsten) for Spring; keep fingers crossed.

Plans for new work into DBD

Colorado WMAP-aware stau study (but with caveat)

• BeamCal efficiencies for various beam delivery scenarios (beset by same caveat)

• Design of second BEAN (BeamCal resdout ASIC) prototype

• ESTB willing, first set of radiation damage studies with silicon sensors

• Not much of this in hand yet (some mild attention/ support from larger SiD group indicated)

G.P. Summers et al., IEEE Trans Nucl Sci 40, 1372 (1993)

Damage coefficients less for p-type for $E_{e^-} < ~1$ GeV (two groups); note **critical energy** in W is ~**10** MeV **But**: Are electrons the entire picture?

Hadronic Processes in EM Showers

There seem to be three main processes for generating hadrons in EM showers (all induced by **photons**):

- Nuclear ("giant dipole") resonances Resonance at 10-20 MeV (~E_{critical})
- Photoproduction Threshold seems to be about 200 MeV
- Nuclear Compton scattering Threshold at about 10 MeV; ∆ resonance at 340 MeV
- These are largely isotropic; must have most of hadronic component develop near sample

5.5 GeV Shower Profile

Proposed split radiator configuration

Radius (cm)

Illumination Profile

Uniform to ±10% over (3x6)mm area

Charge Collection Apparatus

Need to upgrade CC Apparatus for multiple samples

- New detector board to modularize system (connector rather than bonds)
- Two pitch adapters (lithogaphic) to accommodate different detector pitches
- Modications to ASIC board
- Design review Monday 12/19

Chie BBAN Beamcall) Chip

Main Proponent:

Angel Abusleme, Prof. of Electrical Eng. Pontificia Universidad Católica de Chile

BeamCal Instrumentation ASIC Specs

The Bean Prototype: System-Level Design

- 180-nm TSMC processFully independent channels
- Digital memory to store 32 channels x 2820 x 10-bit results per ASIC
- Precharge circuit for the charge-sensitive amplifier (CSA) to maximize output swing
 - CSA precharger doubles as on-chip pulser for electronics calibration
- SC adder followed by a dedicated ADC
- Gated reset for quick baseline restoration
 - This has noise consequences in DCal mode

Noise Filtering, Increasing Input Capacitance

Test done at 1.63 MHz clock (32x slower than nominal speed)

- Filter reduces series noise by 26% (fixed reset scheme)
- Filter + digital CDS reduces series noise by 73%
- Measurements deviate 0.52% from weighting functions calculations

CDS -> Correlated double sampling

BEAN ASIC: Next Steps

- Incremental improvements to filtering strategy
- Scale from 3 to 32 channels
- Digital back-end (switched capacitor array) for storage of full beam-spill for quiescent readout
- Abusleme has obtained funding from Chilean government
- Schumm has interested SCIPP consulting engineer
- Mode of collaboration discussed

Awaiting updating of readout specs

Beam Cal Sinulations

Goal:

 Reproduce Colorado studies of BeamCal electron ID efficiency/purity

 Determine sensitivity to increased/decreased background accumulation rates (different beamdelivery configurations)

Reconstruction Algorithm

- Choose seed layer
- Subtract mean background from all pixels
- Sum energy in sliding window ("tile") of NxN beamcal pixels (N is optimized)
- Chose highest 50 tile depositions in layer [determine efficiency that electron is one of them]
- Reject spurious tiles via longitudinal patterns

Signal to Noise Comparison

Colorado:Mean background is x100 mean signalSCIPP:Mean background is x500 mean signalHave been unable to understand what changed

BeamCal Simulations: Next Steps

• Any thoughts on nature/origin of discrepancy between Colorado/SCIPP signal/background files?

- Calibration
- Configuration
- Beam conditions...

• For now, trying to develop Colorado-like analysis with degraded S/N

Outcome not clear

→ Plea for support

Conclusions

 Gearing up for radiation damage studies in realistic setting (Spring? Under consideration)

 Resources in place for further development of BEAN BeamCal readout ASIC; need to review specs

• Trouble reproducing canonical BeamCal reconstruction efficiency/purity traced to degraded signal/noise in the simulation (?)

Support sought on latter two issues

Backup

Parameters required for Beam Tests

To the presenter at the ESTB 2011 Workshop: please, fill in the table (at best) with the important parameters needed for your tests

Beam parameters		Value		Comments	
Particle Type		electron			
Energy		Maximum			
Rep Rate		Maximum			
Charge per pulse		Maximum			
Energy Spread		Not a concern			
Bunch length rms		Not a concern			
Beam spot size, x-y		Larg	ge is helpful	Up to ~1 cm rms	
Others (e	mittance,)	No	t a concern		
Logistics			Requirements		
Space requirements (H x W x L)			1m x 1m x 1m (plus 20cm x 20cm x 20cm 1-2 meters upstream)		
Duration of Test and Shift Utilization			Depends on available current		
Desired Calendar Dates			CY 2012 (flexible)		

Shower Max Results

Photon production ~independent of incident energy!

G.P. Summers et al., IEEE Trans Nucl Sci 40, 1372 (1993)

Damage coefficients less for p-type for $E_{e^-} < ~1$ GeV (two groups); note **critical energy** in W is ~**10** MeV **But**: Are electrons the entire picture?

5.5 GeV Shower Profile

Fluence (e⁻ and e⁺ per cm²) per incident 5.5 GeV electron (5cm pre-radiator 13 cm post-radiator with 1m separation)

5.5 GeV Electrons After 18mm Tungsten Block

uniform illumination of detector. Instead: split 18mm W between "pre" and "post" radiator separated by large distance

Not amenable for

Caution: nuclear production is ~isotropic → must happen dominantly in "post" radiator!

Radius (cm)

NIEL (Non-Ionizing Energy Loss)

Conventional wisdom: Damage proportional to Non-Ionizing Energy Loss (NIEL) of traversing particle

- **NIEL** can be calculated (e.g. G.P. Summers et al., IEEE Trans Nucl Sci **40**, 1372 [1993])
- At $E_c^{Tungsten} \sim 10$ MeV, **NIEL** is 80 times worse for protons than electrons and
- **NIEL** scaling may break down (even less damage from electrons/positrons)
- NIEL rises quickly with decreasing (proton) energy, and fragments would likely be low energy

Might small hadronic fractions dominate damage?

BeamCal Incident Energy Distribution

Wrap-up

Worth exploring Si sensors (n-type, Czochralski?)

Need to be conscious of possible *hadronic* content of EM showers

Energy of e⁻ beam not critical, but intensity is; for one week run require E_{beam}(GeV) x I_{beam}(nA) > 50

SLAC: Summer-fall 2011 ESA test beam with $E_{beam}(GeV) \ge I_{beam}(nA) \ge 17 - is$ it feasible to wait for this?

Rates (Current) and Energy

Basic Idea:

Direct electron beam of moderate energy on Tungsten radiator; insert silicon sensor at shower max

For Si, 1 GRad is about 3 x 10¹⁶/cm², or about 5 mili-Coulomb/cm²

Reasonably intense moderate-energy electron or photon beam necessary

What energy...?