Progress of the Asian Site-Specific Design - Interim Report toward the TDR -

Masanobu Miyahara

KEK CFS-Team
High Energy Accelerator Research Organization

Progress on the Asian Site-Specific Design

Contents

1. Background on the Asian Siting
2. Facility Arrangement in a Mountain Site
3. Access Method to the Underground Facility
4. Revision of Asian Site-Specific Design
5. Summary

1. Background on the Asian Siting

- Two Candidate Sites
- Features of Japanese Mountain Site
- Essential Condition for Asian Siting

1. Background on the Asian Site

- 75% of the Land is occupied in a Mountainous Zone
- Plains is 10% of all Land.
- the Alluvial Plains; have been formed in Soft Ground carried by Flood, and is Vulnerable to Earthquakes.

Two Candidate Site in Asian Region

- Japanese Mountainous Sites -

Site-A KITAKAMI

> | The Current Candidate Site |
| :--- |
| in 2011 |

Common Features of Both Candidate Sites

■ Geology \& Infrastructure

- Located in the Stable Granite Rock
- no Active Faults, no Volcano,
- Access Road to the Site.
- High-Voltage Transmission Line Near the Site.

SEBURI Site-B
Site-A
KITAKAMI

H
Global Design Effort - CFS
Crustal Strain for 100 Years

Essential Conditions for Siting

- Geological Features for Tunneling (Cavern)

1. Locating on the Stable Bedrock Zone
2. Avoiding the Bad Ground such as the Following
[Active Fault] [Volcanic Zone] [Fracture Zone] Environmental Conditions
3. Exclusion of the Vibration Source such as, [Highway] [Railroad] [Rubble Ground] etc.
4. Separation with a Valuable Nature \& Cultural Assets Infrastructure \& Social Conditions
5. Security of the Access Road for Construction Vehicle, Installation and Maintenance after the Completion
6. Ability for Electric Power Supply
(High-Voltage Power Transmission Line)

2. Underground Facilities in Mountain Site

- Outline of the Underground Facilities
- Access Method (Shaft or Tunnel)
- Tunneling Method (TBM or NATM)
-Reference Case : Maraysia Project—

2. Outline of the Underground Facilities in a Japanese Mountain Site

Tunnel Structures for ML, BDS, DR, RTML

- ML Tunnel (include RTML) : 25km
- BDS Tunnel : 5.8km
- Damping Tunnel : 3.2km
- Access Tunnel (ML, DR, Detector Hall) : about 10km

Cavern Facilities for ML, Detector Hall

- Big Cavern for the Detector Hall.: 1
- Medium Cavern for Access Hall : 6
- Small Cavern for Substation and Machinery

2.1 Underground Facilities in the Mountainous Site

Mountainous Site /TBM

Main Linac Tunnel, L=31km
Granite Rock Zone
Side Portal

2.1 Underground Facilities in the Mountainous Site

Mountain Site/NATM

Main Linac Tunnel, L=31km
Granite Rock Zone

GIobal Design Etort - cFs Access Hall Cavern

Access Tunnel Section

Pahang-Selangor

Raw Water Transfer Project
Lot 1-1, Water Transfer Tunnel and Related Works

$$
22 \text { Fèbruary } 2011
$$

- Tunnel Construction of the ILC Scale Started.
- Site is Located in Mountainous Region.
- Geology is Granite, and very hard Rock.
- TBM \& NATM are advancing simultaneously.

Pahang-Selangor Raw Water Transfer Project

- Outline of Project -

Pahang-Selangor Raw Water Transfer Project

The Obiective of the Proiect.

Malaysia has experienced high economic growth from 1980's onwards which has resulted in high demands for water for commercial and industrial development centres
The Selangor/Kuala Lumpur region is the most important focus of high water demand. The water demand in this region is expected to grow at a high rate
The objective of the Project is to construct a tunnel to convey raw water from Pahang State to ensure that there is sufficient water available from Selangor State, Kuala Lumpur and Negeri Sembilan
State.
Design Discharge of Water Transfer Tunnel is $27.6 \mathrm{~m}^{\prime} / \mathrm{sec}$.

Project Detail

Employer: Ministry of Energy, Green Technology and Water. Malaysia (KeTTHA)
Engineer: TEPSCO(JPN) - SMEC(AUS) - SMHB
$\begin{array}{ll}\text { Contractor: } & \text { Shimizu - Nishimatsu - UEMB - IJM Joint Venture } \\ \text { Duration: } & \text { Ist June 2009-30th May } 2014 \text { (1.825 days) }\end{array}$
Duration: 1st June 2009 - 30th May 2014 (1.825 days)

Tunnel Boring Machine
Mechanical Method)

Tunnel Excavation Method

NATM

- Applied to Adit and NATM
(11.6 km, Width 5.2 m , Height 5.2 m)
- New Austrian Tunneling Method (1960')
- Drilling and Blasting
- Shotcrete, Rock Dowel\&Steel Rib etc.

TBM

- Applied to TBM (34.4km, Dia. 5.2m)
- By Tunnel Boring Machine
- Fiber mortal, Rock Dowel\&Steel Rib etc

Cut \&Cover

- Applied for Concrete Conduit
(1.1km, Inner Width 4.0 m , Height 4.7 m)
- Excavation with Retaining Wall
- Fill upon the Completion of Structure

- Construction Schedule -

Tunnel Excavation Method for TBM

Applied to TBM (34.4 km) by Tunnel Boring Machine, Fiber Mortal

Specification of TBM		
Item		Description
Diameter and Type		5.2 m , Open tyre
Maximum Stroke		1.8 m
Power		AC11,000V, 3 -phase, 50 Hz
Cutterhead Output		$7 \times 330=2310 \mathrm{~kW}$
Number of Cutter		19 inch 27 nos
		17 inch 8 nos
		Total $=35 \mathrm{nos}$
Total Thrust Force		$14,000 \mathrm{kN}(=3,500 \times 4 \mathrm{pcs})$
Cutter Torque		Max. $4054 \mathrm{kN}-\mathrm{m}$
Cutterhead Rotation Speed		$0 \sim 12 \mathrm{rpm}$
Mass of TBM Machine		250 ton
Belt conveyor	Width	914 mm
	Capacity	$895 \mathrm{~m}^{3} / \mathrm{hr}$

Major Equipment for TBM			
	Equipment	Type	Nos
Excavation	TBM Machine	© 5. 2 m , Open Type	
	Continuous Belt Conveyer	$\mathrm{L}=11.4 \mathrm{~km} \sim 11.8 \mathrm{~km}$	3
	Belt Conveyer for Adit	$\mathrm{L}=440 \mathrm{~m} \sim 860 \mathrm{~m}$	3
	Segment Grout Mixer	200Litre/min	3
Fibre Mortar	Mortar Shotcrete Machine with Compressor	$2.2 \mathrm{~m} 3 /$ hour	3+3
	Mortar Locomotive		6
Transportation	Diesel Locomotive	10 ton	9
	Material Cart	$\mathrm{t}=3.0 \mathrm{~m}$	18
Shotcrete	Agitator car	6 m 3	3
	Steel Fibre Shotcrete Machine	$20 \mathrm{~m}^{3} /$ hour	3
Drilling for investigation	Drilling Machine for investigation	COP1838 with Rod Changer	3
	Boring Machine for drain hole	RPD-100	1
Others	Gantry Crane	3.2ton	3
	Direction Control	Robotic Auto Navigation System	0
Total			64

Tunnel Excavation Method for NATM

Applied to Adit and NATM (11.6 km) New Austrian Tunneling Method from 1960' Drilling and Blasting, Rock dowel, Shotcrete

Equipment for NATM			
	Equipment	Type	Nos
Excavation	Drilling Jumbo	Rocket Boomer L2C, or 352	4
	Breaker	PC128LS +1300 kg	4
	Excavator	PC $128 \mathrm{LS}\left(0.45 \mathrm{~m}^{3}\right)$	4
	Vehicle for Explosive	1 TONNE	4
	Vehicle for Explosive	4 TONNE	4
Mucking	Schaeff Loader	KL41	4
	Dump Truck	Volvo 20 T	15
	Wheel Loader	KOMATSU WA2OO-3 $1.4 \mathrm{~m}^{3}$	3
Shotcrete	Shotcrete machine	$\begin{aligned} & \text { SIKA-PM407-P } \\ & 4-20 \mathrm{~m}^{3} / \mathrm{hr} \end{aligned}$	4
	Truck Mixer	$6.0 \mathrm{~m}^{3}$	8
Rock Dowel	Mortal Pump	MAI PUMP M400-NT	4
	Vehicle for Rock Dowel	2t Flat Truck	4
	Lorry Crane	4t Crane Truck	4
Sub Total			66
Lining	Concrete Pump	55 m / $/ \mathrm{hr}, 55 \mathrm{~kW}$	3
	Slide Formwork	$\mathrm{L}=12.0 \mathrm{~m}$	3
Grout	Grout pump	2ton Truck	3
Others in Tunnel	Power Supply Car	10ton Truck	6
	Dust Collector	1,200m ${ }^{3} / \mathrm{min}+4 \mathrm{tT}$	4
	Ventilation Fan	1,200 $\sim 1,500 \mathrm{~m}^{3} / \mathrm{min}$	4
	Truck Crane	4 t	8
Total			97

Construction Base

Access Portal

Muck Loader, Muck Car, Disposal Area

Summary of Malaysia Inspection

Common Features with ILC Facility (in Japan)

- Facility Scale : Tunnel Length =45km
- Geology of the Site Location : Granite Bedrock
- Geography of the Location : Mountainous Region
- Tunneling Method : TBM, NATM, Access Tunnel

Clear Different Points

- The Rout Change by Geology : Possible
- Leakage of Ground Water : Permissible to some Extent
- Stability after Completion : Usual Accuracy

3. Consideration on Access Method

- Experience in Japanese Tunneling
- Vertical Shaft and Access Tunnel

Japanese Tunneling

List of Access Method in the Past（1）

No	Tunnel	Access Route	Incline Tunnel	Vertical Shaft	Shaft Depth（H：m）			Shaft Diameter（D：m）		
					H＜ 50	$50<\mathrm{H}<150$	$150<\boldsymbol{H}$	$6.0<$ D 2.0	$9.0<$ D	\square
1	北陸	3	2	1			1	1		
2	桂城	4	4							
3	新清水	1	1							
4	六甲	6	5	1	1					1
5	安芸	3	3							
6	新関門	9	8	1	1		－			1
7	北九州	4	2	2	2		，	1		1
8	生田	2	1	1	1					1
9	福島	4	3	1	1					
10	蔵王	1	1							
11	榛名	6	4	2	1	1		2		
12	中山	3		3			3	3		
13	大清水	6	6							
14	塩沢	1	1							
15	青函	8	6	2			2	2		
Total		61	47	14	7	1	6	9		4

From the Literature Research of the Large Tunnel Cases in 1958～1986

\square Table－2 List of Access Method in the Past（2）

No	Tunnel	Access Route	Incline Tunnel	Vertical Shaft	Tunnel Length（L：m）			Tunnel Gradient（i：\％）		
					L＜ 500	$500<$ L＜1000	$1000<$ L	$0<\mathrm{i}<10$	$10<i<20$	$20<i$
1	北陸	3	2	1	2			1		1
2	桂城	4	4		4					4
3	新清水	1	1		1					1
4	六甲	6	5	1	4	1				5
5	安芸	3	3		1	2				3
6	新関門	9	8	1	8				1	7
7	北九州	4	2	2	2					2
8	生田	2	1	1	1					1
9	福島	4	3	1	3				1	2
10	蔵王	1	1		1					
11	榛名	6	4	2	4					4
12	中山	3		3						
13	大清水	6	6		4	2			2	4
14	塩沢	1	1		1					1
15	青函	8	6	2	2	2	2			6
Total		61	47	14	38	7	2	1	4	41

From the Literature Research of the Large Tunnel Cases in 1958～1986

■ Access Method Example in the Past

1. Vertical Shaft

- Depth: Half of the Examples is less than 50 m . Other Half is Over than 150m. Max=380 m.
- Diameter: all Example is 6 ~ 9 m . 4 Example: Rectangle.

2. Inclined Shaft (Inclined Tunnel)

- Length: Almost (80%) is less than 500 m .
- Gradient: Almost All (90\%) is more than 20\% Slope.

3. Common Method in the Past

- Steep Slope Tunnel is Common Method
- Velt-Conveyor Method was Mainstream for Carrying out the Muck and other Construction Equipment.

Global Design Effort - CFS
Table-3 Access Examples in a Huge Tunnel (Railway)

Project	Tunnel	Length	Type	Size	Shape	Length	Slope	Mucking
TOHOKUSHINKANSEN	$\begin{aligned} & \text { ICHINOHE } \\ & (2002) \end{aligned}$	25.8 km	Incline	W6.3*H4.8	Horseshue	411 m	6.0 \%	Dump T
			Incline	W6.3*H4.8	Horseshue	524 m	10.0\%	Dump T
			Incline	W6.1*H4.7	Horseshue	552 m	10.0\%	T. Container
			Incline	W6.6*H6.0	Horseshue	1,015 m	10.0\%	Dump T
			Incline	W6.1*H4.9	Horseshue	1,251 m	10.0\%	Dump T
	HAKODA(2005)	26.5 km	Incline	W6.4*H5.0	Horseshue	718 m	8.7 \%	Dump T
			Incline	34.0 m ${ }^{2}$	Horseshue	738 m	6.8 \%	Dump T
			Level	30.0 m ${ }^{2}$	Horseshue	1,331 m	1.1 \%	Dump T
			Level	W6.4*H5.0	Horseshue	948 m	3.6 \%	T. Container
HOKURIKUSHINKANSEN	IIYAMA(2007)	22.2 km	Incline	$26.5 \mathrm{~m}^{2}$	Horseshue	230 m	9.7\%	B. Conveyor
			Incline	$32.0 \mathrm{~m}^{2}$	Horseshue	765 m	12.0\%	Dump T
			Incline	27.0 m ${ }^{2}$	Horseshue	270 m	12.0\%	Dump T
			Incline	34.0 m ${ }^{2}$	Horseshue	710 m	10.0\%	B. Conveyor
			Incline	$27.0 \mathrm{~m}^{2}$	Horseshue	523 m	7.5 \%	D.T+B.C

From the Literature Research of the Large Tunnel Cases in 2002~2008

- Access Method in Recent

1. Background

- Upsizing of the Tunnel Section (Road, Railway, etc) and the Construction Machine.
- Tire Method is in Use for Rapid Construction
- Serious Consideration of Safety

2. Actual Condition in Recent Years

- All Access Examples are Inclined Tunnel with the Horseshoe Shape by NATM.
- Cross Section Size: around 30 Square meters
- Tunnel Slope: Less than 12\%

Comparison: Two Typical Acess Methods

Vertical Shaft\qquad Access Road		Which is Suitable?	Inclined Tunnel	
Remarks		Topic		Remarks
Limited (Access Point)	Δ	Locating (Portal)	(0)	Flexible (Access Portal)
Addition an Access Road	-	Construct. Cost	-	
	-	Construct. Period	-	
Operation only a Crane	Δ	Muck Carrying	O	Carrying by a Dump Truck
	-	Water Drainage	-	
Advantage by Shortness	\bigcirc	Ventilation	Δ	Long Distance
Advantageous	\bigcirc	Maintainability	Δ	Disadvantageous
Vertical Evacuation	Δ	Safety (Refuge)	O	by an Evacuation Vehicle
by a Crane	-	Installation	-	by a Trailer Truck

3.2 Consideration of the Access Method

Access Method to the Underground Facility should be Determined on a Case-by-Case In Synthetically Consideration of Geographical Conditions, Cost, Construction Schedule , and Safety Issue, etc.

Basic Specification in the Case of Access Tunnel

- Inner Section Size : W11.0 m \times H11.0 m
- The Maximum Slope : < 7.0% (for Installation)
- Incidental Facilities : Ventilation (Air, Smoke, He)

Drainage Facilities, Safety Facilities (Evacuation)

4. Revision of the Asian Site-Specific Design

- Process of the Scheme Change
- Case Studies on Underground Structure Configuration (Interim Report)

4. Revision of Asian Site-specific Design

- Process of the ML Tunnel Scheme Change
- Twin Tunnel Scheme (RDR, 2007)
- Single Tunnel Scheme with a Sub-tunnel (SB2009)

- Single Tunnel Scheme without a Sub-tunnel (TDR)

■ Revision toward TDR

- Case Study about the Cost and Construction Schedule
--- Most Suitable Design in a Mountain Site ---
- True Single Tunnel Configuration (TBM \Leftrightarrow NATM)

Japanese Configuration

nel

 \square Japanese Scheme (2009)

 \square Japanese Scheme (2009)}

ML-Tunnel Configuration

Beam Line RFLine \quad Revision Scheme by NATM

Concrete Shield

Drainage Pit

Main Linac Tunnel Image

Overview of the Cases

Case-1	Case-2	Case-3	Case-4
RDR D-T-R	RDR S-T-R	XFEL JS-T-X	KCS JS-T-K
Circle/Double T	Circle/Single T	Circle/Single T	Circle/Single T
Case-5	Case-6	Case-7	Case-8
DRFS JS-T-D	DRFS JS-N-D	DRFS S-N-D	DRFS wS-N-D
Circle/Single T	NATM/J-Single T	NATM/J-Single T	NATM/J-Single T

List of the Comparison Cases

Tunnel Configuration
- Double Tunnel (D)
- Single Tunnel (S)
- Japanese ST. (JS)

Tunnel Shape

- TBM-Circle Section
- NATM-Warhead Section

HLRF Type

- RDR
- XFEL
- KCS
- DRFS

CASE-NO	Code		Method	HLRF	Remark
CASE-1	D-T-R	D	TBM	RDR	Service Tunnel
CASE-2	S-T-R	S	TBM	RDR'	
CASE-3	JS-T-X	JS	TBM	XFEL	Sub Tunnel
CASE-4	JS-T-K	JS	TBM	KCS	Sub Tunnel
CASE-5	JS-T-D	JS	TBM	DRFS	Sub Tunnel
CASE-6	JS-N-D	JS	NATM		Sub Tunnel

CASE－1 《D－T－R》－Double Tunnel－TBM－RDR System
－Original Plan based on RDR
－RDR Original Plan Which is Composed of Beam Tunnel and Service Tunnel．
－Borehole for the Wave guide is constructed between Beam Tunnel and Service Tunnel Tunnel at Intervals of 12 m ．
－An Access Hall is Arranged Every 5 km．

Beam Tunnel Service Tunnel

CASE－2 《S－T－R》－Single Tunnel－TBM－RDR System

－Single，Large Section Tunnel based on RDR
－Single Large Tunnel include all ML Equipment．
－Beam Tunnel and Service Tunnel are separated with Horizontal Partition Slab．
－The Lowermost Trench in a Tunnel is utilized as a Groundwater Drainage Canal．

CASE－3 《JS－T－X》－Single Tunnel－TBM－XFEL System

－Layout Plan by the XFEL RF System
－Cross Section of the Beam Tunnel is the Same Size of XFEL＇s Tunnel in DESY．
－Sub－tunnel will be constructed for Cooling t Water Piping，Drainage and Evacuation．
－Access Hall：a Big Cavern to Install the RF Equipment such as Pulse Modulator．

CASE－4 《JS－T－K》
 －Single Tunnel
 －TBM－KCS System

■ Layout Plan by the KCS RF System
－Cross Section of the Beam Tunnel is planed at the Same Size of KCS＇s Tunnel．
－Access Hall is the Biggest Cavern in order to Install the Equipment like a Klystron．
－Access Hall is Arranged at intervals of within 2.5 km on the Main Linac Tunnel．

Beam Tunnel

Service Tunnel

CASE-5 《JS-T-D》 - (J)Single Tunnel - TBM - DRFS System

■ Layout Plan by the DRFS System

- Original Plan of Japanese Version Single Tunnel Configuration (2009)
- Sub-tunnel will be constructed for cooling Water, Drainage and Evacuation.
- It is Necessary to Arrange the Local Cavern every 600 m on the ML-Tunnel.

Beam Tunnel

Service Tunnel

- NATM Version of Case-5
- Proposal Scheme which Changes TBM of the Case 5 into NATM.
- Cross Section of Both Tunnels is Horseshoe Shape by NATM.
- Adit Tunnel will be constructed in order to the Beam Tunnel and the Access Hall in parallel with NATM.

Beam Tunnel Service Tunnel

- Single, Large Tunnel Version by NATM
- Partition Wall (0.4 m) Separated the Beam Line and RF Zone, Protects the Electronic Devices from Radiation.
- Trench Under the Floor is used as a Groundwater Drainage Canal.
- BDS \& DR Tunnel will be constructed by NATM

CASE-8《wS-N-D》 - Single Tunnel -NATM - DRFS System

- Improved Version of Case-7
- RC-Shield Wall of 3.5 m thickness Protects the Person in the RF Zone from Radiation.
- It is not Necessary to Arrange the Local Cavern (Machine Room) for Air-Conditioning and Cooling Water Supply.
- Refuge Path

5. Summary

1. Background of the Siting

- Asian Region have Two Candidate Sites.
- Both Sites are located on the Stable Bedrock.

2. Facility Arrangement in a Mountain Site

- We are Studying now Various Scheme for Civil Works of Underground Facility

3. Consideration of Access Tunnel Issues

- Inclined Tunnel is suitable for Access to the Tunnel and Cavern in Japanese Mountainous Site.

4. Revision of the ML-Tunnel Configuration

- New Configuration by NATM Tunneling is on Progress.
- Technical Study about the Construction Cost and Construction Schedule is on Progress toward TDR.

