ILD MDI Update

Assembly and Detector Hall Issues

Karsten Buesser

24.04.2012 KILC12

Overview

- Machine group is finalising the design of the civil facilities for the TDR/DBD
- This is in the focus of the ILC management: cost drivers!
- Discussions between detector concepts (SiD/ILD) and ILC CFS group have been intensified since Granada
- Dedicated meeting in December at SLAC: final input from detector groups
- Started with the "non-mountain" sites hall design finalised
- Japanese site requirements are different
- CFS Baseline Technical Review Workshop at CERN on March 22-23
 - Discussions with GDE on cost issues!

ILD in Maintenance Region (non-mountain site)

CMS Assembly

CMS Assembly

ILD Assembly

- CMS-type assembly for non-mountain sites:
 - Pre-assemble and test ILD components on surface as far as possible
 - Lower five yoke rings with pre-installed detector components
 - About one year of assembly underground
- Non-CMS-type assembly for mountain sites:
 - Part sizes are limited by access tunnel
 - Yoke rings need to be built underground
 - Sub-detectors mostly installed underground
 - Need more time (~3y) and more underground space

Japanese Hall Design (Status: 22.03.2012)

• Enlarged Alcoves G. Orukawa

• 142 m long

ILD Design

• Assumption: basic detector model will not change for mountain sites

- Start with central ring on platform
- Space needed for: tools, scaffolding, surveying equipment

• 200t crane coverage needed

R. Stromhagen

Yoke Assembly - Endcap

Yoke Assembly - Endcap

Yoke Assembly

- Tolerances of the ring segments need to be better than 1 mm
- Laser surveying needed during full assembly
- Tools needed
 - 200t crane
 - chain hoists
 - taylored tools: beams etc.
 - hydraulics
 - surveyors
- Time estimate: 60 working days per ring

Coil Installation

- Coil can only be transported without its ancillaries (cold box, chimney)
- Functional test needs to be done underground after installation into central barrel yoke ring
 - very low fields, yoke will not be ready by then
 - Takes >3 months (incl. cool-down and warm-up)
- Test of field mapping equipment is needed at the same time
 - ALEPH experience

R. Stromhagen

AHCAL Installation

AHCAL/ECAL Installation

Calorimeter Installation

- Special tooling needed: support cradle, directly mounted to the coil
- Crane coverage
- Surveying equipment
- Time estimate for AHCAL barrel:
 - 180 working days
- ECAL barrel:
 - probably less
- Endcaps: ?

K. Gadow

TPC Installation

- Critical path is defined by central detector construction:
 - central yoke ring, coil, barrel calorimeter, TPC, inner detector
- Will have several coexistent major "construction sites" at the same time in the underground hall:
 - barrel part, both endcaps
 - consecutively: two other barrel yoke rings, QD0 pillar, forward calorimeter
- Time estimate: 3.25 years
- But: need sufficient underground space!
- There are remaining open questions:
 - how does the crane and transport capacity interfere with this plan?
 - when will the cryo services underground be ready (coil test)?
 - ...

Japanese Hall Design (Status: 22.03.2012)

Maintenance Position (ILD Study)

• Alcoves needed to open the detector for maintenance

Underground Construction Space (ILD Study)

- Need several assembly areas in the hall
- Studies on space, transportation and time requirements are on going

Detector assembly area

- Area 1: Platform
 - YB0 assembly
 - Barrel detectors installation/ cabling
 - Endcap calorimeters installation
- Area 2/3: Alcoves
 - Endcap calorimeters cabling
 - QD0 support tube assembly
 - FCAL install/cabling
- Area 4: Tentative platform on beam line side
 - YE, YB+, YB- (iron yoke and muon detector) assembly/install/ cabling
- Area 5: Loading area side
 - HCAL rings assembly
 - Tooling assembly
 - Storage area

Boundary conditions

Cranes

- 250 ton crane for each detector on beam line side
- 30 ton crane for each detector on loading area side
- 2.8 ton crane in each alcove
 - In order to minimize the size of alcoves, the crane rails should be supported from the arch part → Only small cranes can be used
 - The height of alcoves have to be increased from 19.6m to 20.5m (for ILD) to let the crane girder pass over the detector

Work conflicts

 In order to avoid conflicts of parallel works, first few hours of each working day should be dedicated to transportation to each assembly area

- Tentative platform is assembled in Area4 using a crawler crane
- Central barrel yoke YB0 is assembled on the platform using 250 ton crane
- HCAL modules are assembled to a ½-z ring in Area5 using 30 ton crane
- Cradle for coil installation is assembled in Area5 using a crawler crane

Step 2

 Solenoid coil is moved to the platform using two sets (one from SiD) of 250 ton crane

- Endcap iron yoke
 (YE+) is assembled
 in Area 4
- Solenoid coil installation to the YB0 in Area 1

Step 4

 Muon detector installation to YB0

- YE+ is moved to platform using airpads after muon detector installation
- HCAL barrel ½-z ring is assembled in Area 5

- Endcap yoke YE- is assembled in Area4
- Muon detector of YB0 cabling
- HCAL barrel ring assembly in Area5

- YB0 shifted in z direction
- Endcap HCAL installation in Area 1
- Scaffold for endcap cabling is assembled in Area 5

- YE- is moved to platform
- ½ of barrel HCAL is moved to platform using two 250 ton cranes, and installed
- Endcap yoke (+) is pushed into Area 2
- Endcap HCAL cabling in Area 2
- Scaffold for barrel cabling is assembled in Area 5

- Another barrel yoke ring YB+ is assembled in Area 4
- Central barrel YB0 is shifted in z direction
- Barrel HCAL (+) cabling in Area 1
- Endcap HCAL (-) installation in Area 1

- Endcap yoke (-) is pushed to Area 3
- ½ of barrel HCAL is moved to platform using two 250 ton cranes, and installed

- YB+ muon detector installation and cabling in Area 4
- Endcap ECAL (+) installation using 30 ton crane in Area 1
- Barrel HCAL (-) cabling in Area 1
- Endcap HCAL (-) cabling in Area 3

- Endcap yoke (+) pushed into area2
- Endcap ECAL(+) cabling
- Endcap ECAL(-)
 installation in area1
 using 30 ton crane

Step 13

YB+ is moved to Area1

 Another barrel yoke ring YB- is assembled and muon detectors installed in Area 4

- Endcap ECAL (-) cabling in Area 3
- Barrel ECAL is installed in Area 1

Y. Sugimoto

Step 14 Barrel ECAL cabling in Area 1 **ECAL B** cabling 22

Step 15

 Detector is closed and field mapping is performed

- QD0 support tubes assembly in Area 2/3
- QD0 and BCAL installation/cabling in Area 2/3
- After removing the tentative platform in Area 4, beam line shield is constructed

Step 16

Detector is opened again

 TPC installation in Area 1

 Lumical installation using 2.8 ton cranes in Area 2/3

Step 17

 Si inner trackers are installed in Area 1

Step 18

 Detector is closed again and ready for detector precommissioning

- Installation studies are still work in process
- Cross-checks with 3D models are yet to be done
- Implications of common infrastructure use (access tunnel, cranes) not studied yet
 - Might need buffer space

Clearly: installation of ILD in the mountain site hall is a challenge!

ILD Time Line Study

Y. Sugimoto

- Total construction time: ~8 years
- Detector underground construction: ~3 years

CMS Assembly - Tooling

CMS Surface Assembly Hall

Summary and Outlook

- ILD MDI work is concentrating on integration issues in the Japanese mountain site hall now
 - Underground facilities are cost drivers!
- We are studying the ILD assembly in the Japanese hall
 - First studies done on 2D models
 - Conclustion expected for ILD workshop May 23-25 2012 (Fukuoka, J)
- We need to understand better the implications of the common use of the infrastructures during the assembly of
 - ILD
 - SiD
 - Machine
- Started to write the DBD....