

Cornell ERL Vacuum System as a Model for ILC Damping Vacuum System Conceptual Design

Yulin Li & Joe Conway

Cornell Laboratory for Accelerator-based Sciences and Education Cornell University, Ithaca, New York, USA

6" of Snow on 4/23 Ithaca

Outline - Why talking about Cornell ERL?

- There are similarities between the proposed Cornell ERL vacuum system and the ILC DR's
- Significant conceptual design work were done in the Cornell ERL vacuum system, such as basic building blocks and chamber, pumping and gauging, etc.
- A extensive cost estimate was recently commissioned by Research Instrument (an German consulting company, April 2010), based on solicited vendor quotes, using Cornell designs
- Designs from other institutes are also employed here

Cornell ERL Studies

Cornell Energy Recovery Linac

Project Definition Design Report

Editors: Georg Hoffstaetter, Sol Gruner, Maury Tigner

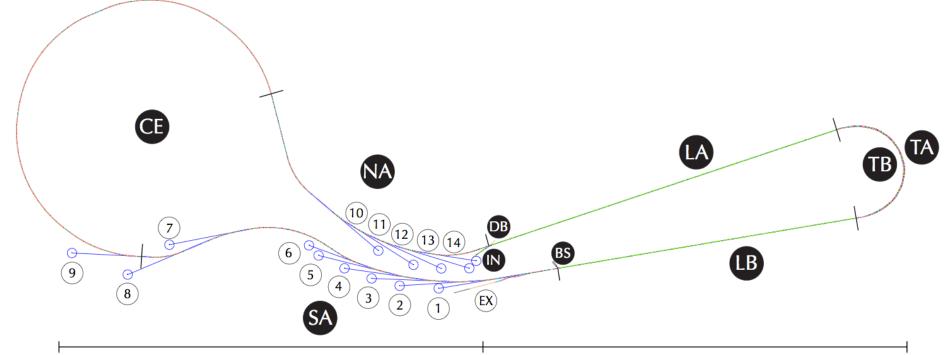
Contributors: I. V. Bazarov, S. A. Belomestnykh, D. H. Bilderback, M. G. Billing, J. D. Brock, B. W. Buckley, S. S. Chapman, E. P. Chojnacki, Z. A. Conway, J. A. Crittenden, D. Dale, J. A. Dobbins, B. M. Dunham, R. D. Ehrlich, M. P. Ehrlichman, K. D. Finkelstein, E. Fontes, M. J. Forster, S. W. Gray, S. Greenwald, S. M. Gruner, C. Gulliford, D. L. Hartill, R. G. Helmke, G. H. Hoffstaetter, A. Kazimirov, R. P. Kaplan, S. S. Karkare, V. O. Kostroun, F. A. Laham, Y. H. Lau, Y. Li, X. Liu, M. U. Liepe, F. Loehl, L. Cultrera, T. Miyajima, C. E. Mayes, J. M. Maxson, A. Meseck, A. A. Mikhailichenko, D. Ouzounov, H. S. Padamsee, S. B. Peck, M. A. Pfeifer, S. E. Posen, P. G. Quigley, P. Revesz, D. H. Rice, U. Sae-Ueng, D. C. Sagan, J. O. Sears, V. D. Shemelin, C. K. Sinclair, D. M. Smilgies, E. N. Smith, K. W. Smolenski, Ch. Spethmann, C. Song, T. Tanabe, A. B. Temnykh, M. Tigner, N. R. A. Valles, V. G. Veshcherevich, Z. Wang, A. R. Woll, Y. Xie, Z. Zhao

Cornell ERL Studies

Report/ Bericht	Report Number/ Berichtsnummer		3086-BP-8384-0	
			Page/Seite 1/93	
Subject/Thema	Place/Ort		Date/Datum	
	Bergisch Gladb	ach	20.04.2010	
Study III: Budgetary estimate for ERL beamline components	Author/ Verfasser	Phone/ Telefon	Signature/ Unterschrift	
	Kai Dunkel	2910		
Project/Projekt 3086 Cornell Study III	Release/ Freigabe			

Distribution/Verteiler:

CORNELL


RI: CPI, DSC, DTR, PBI

Cornell ERL Layout and Basic Specification

Operating Modes	A	В	C	Unit
	$High\ Flux$	$High\ Coherence$	$Short\ Bunch$	
Energy	5	5	5	$\overline{\text{GeV}}$
Current	100	25	25	mA
Bunch Charge	77	19	19	m pC
Repetition Rate	1.3	1.3	1.3	GHz
(SA/NA)	31/52	13/34	21/66	nm

Building Blocks for DR Vacuum System

- Majority of vacuum chambers (drift beampipes, dipole and multipole vacuum chambers) are to be constructed from aluminum extrusions.
- Ante-chamber is to be incorporated in the extrusions, to minimize primary SR photons in the beam apertures
- Distributed pumping with NEG strips is the primary vacuum pumping, with sufficient discrete sputtering-ion pumps for start-up and for handling NEG activations

Beam Aperture

Chamber Design Examples – I

Pump Chamber

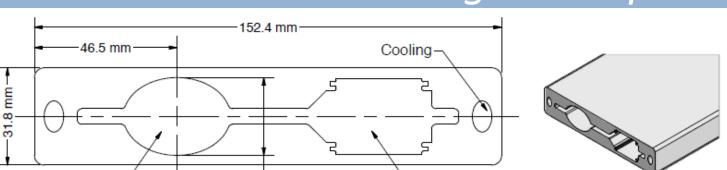


Figure 0.1.1: Extruded aluminum chambers comprise the beam aperture and the ante chamber for pumping and cooling channels.

25.4 mm

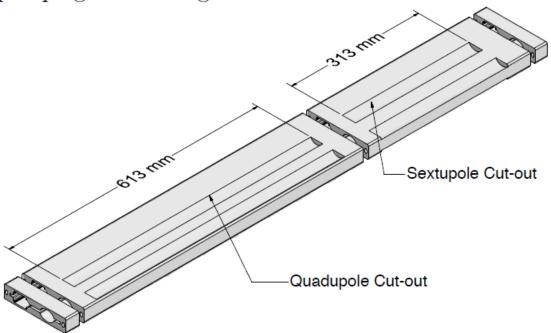


Figure 0.1.2: The extrusion with pole-tip grooves for both quadrupole and sextupole magnets

Chamber Design Examples – IIIII

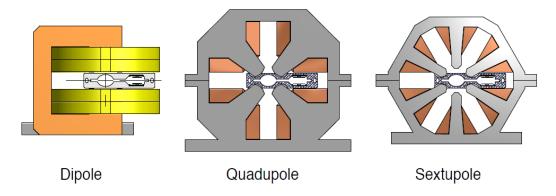


Figure 0.1.3: Cross sections of the beampipe extrusions and magnets at dipole, quadrupole and sextupole magnets.

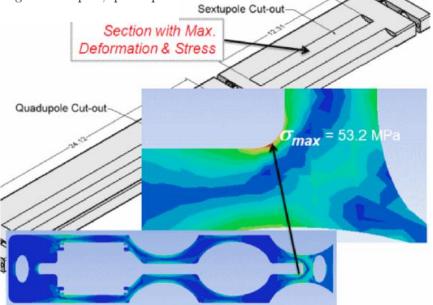


Figure 0.1.4: Calculated deformation of the chamber extrusion after pole-tip grooving. Maximum deformation is ≈ 0.1 mm in the middle of a sextupole magnet, and maximum stress at the corner is $\approx 53.2 \,\mathrm{MPa}$, well below material yield stress of 240 MPa for 6063-T6 aluminum alloy

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE) Chamber Design Examples — III

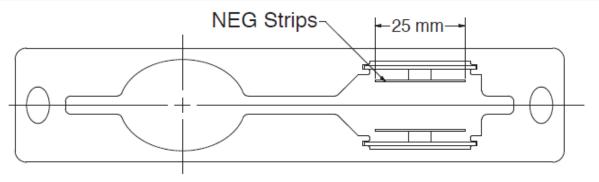


Figure 0.1.5: NEG strips are mounted in the ante-chamber, located on the radial outside of a bending magnet, close to the SR-induced gas load.

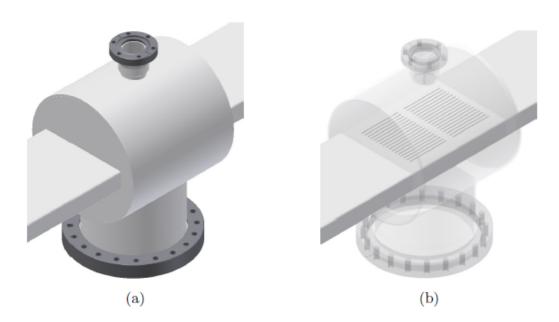
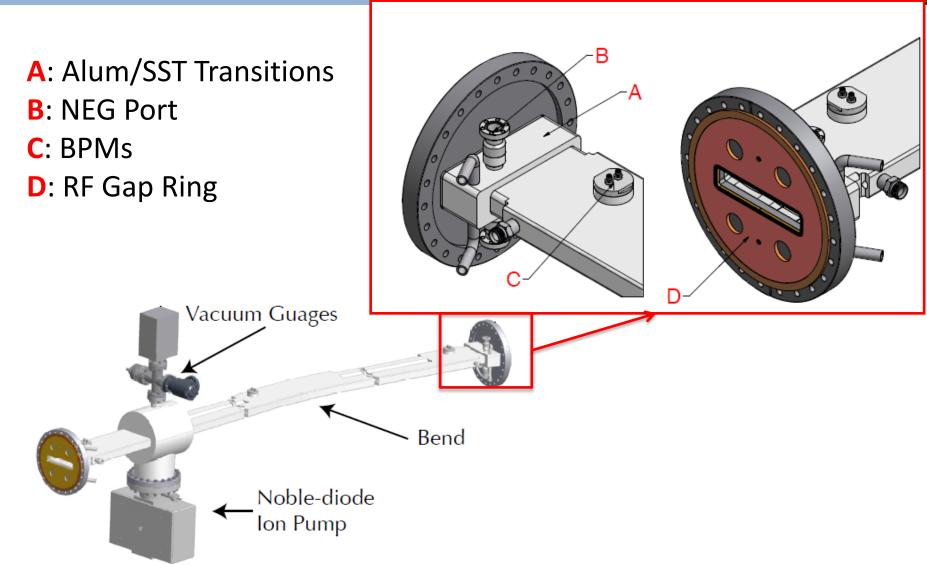
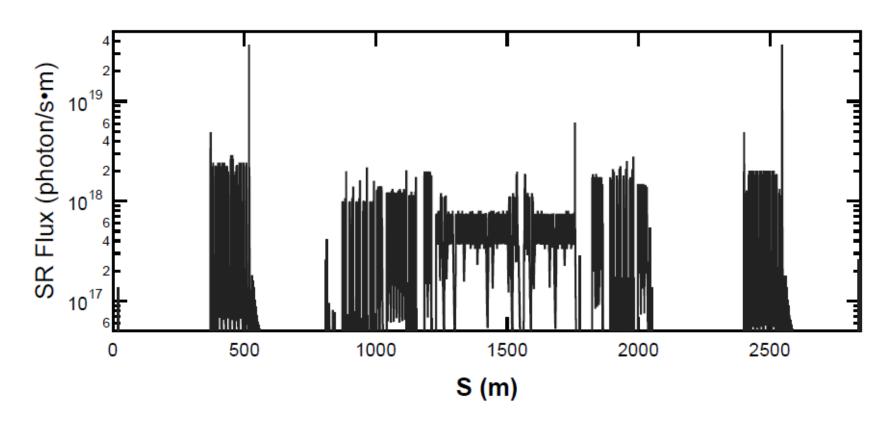



Figure 0.1.6: Lumped pumps are installed at pump ports comprising a shroud (Fig. 0.1.6a) welded around the extrusion with pumping slots and (Fig. 0.1.6b) cutting through both top and bottom.

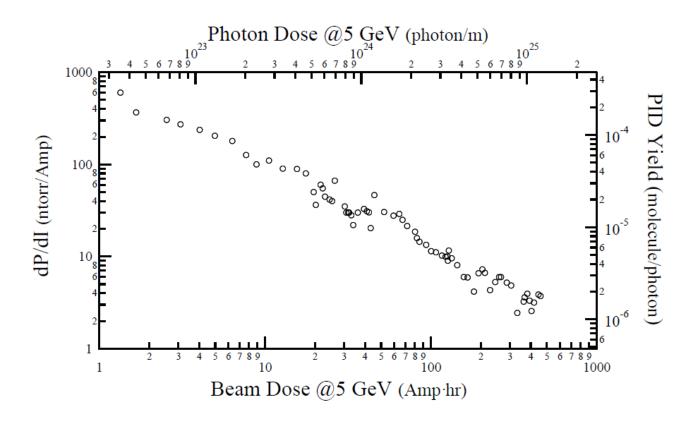

Chamber Design Examples – [V.]

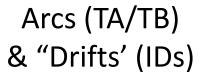
A vacuum chamber with integrated vacuum pumps, gauges, BPMs and features to accommodate dipole, quadrupole and sextupole magnets.

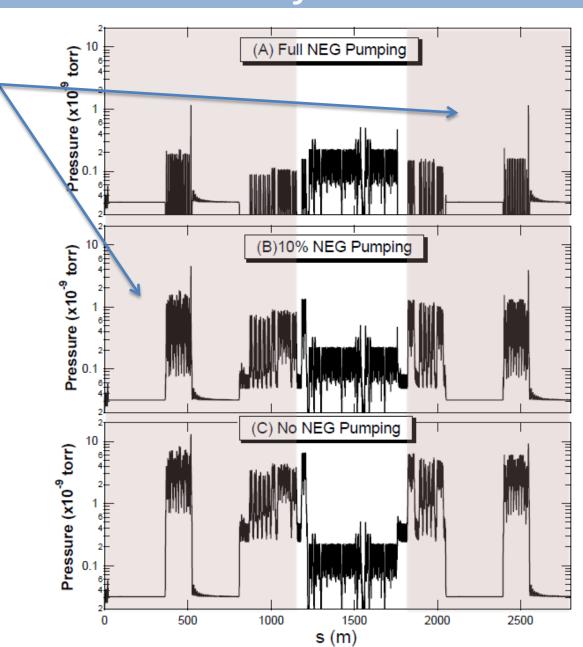
SR-Induced Gas-Load

$$\dot{Q} = \eta_{\rm ph} \cdot F_{\rm SR} \quad \eta_{\rm ph} \propto D^{-\alpha}$$

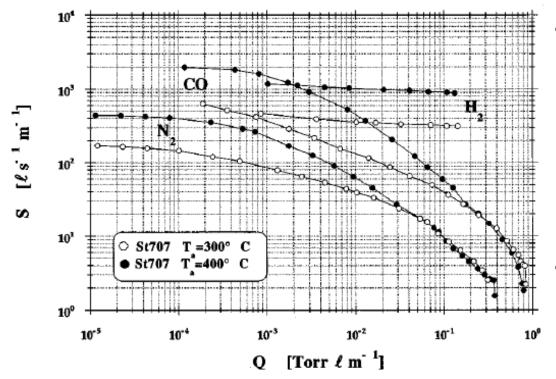
SR-Induced Gas-Load




Figure 0.1.13: A typical vacuum-beam conditioning trend of a newly installed aluminum chamber in a CESR dipole magnet.


$$\eta_{
m ph} \propto D^{-lpha}$$
 with $lpha$ = 0.6 ~ 1.0

Pressure Profile Calculations



NEG Strip Pumping Capacity,

- In the Cornell ERL vacuum system design, sufficient NEG pumping capacity is build in to provide adequate running period between activations
- ILC DR design need to a similar estimation

Table 0.1.2: NEG Duration with continuous 100 mA Operation

Section	Average SR Flux	SR Gas-load	Time before losing
		(CO-equivalent)	50% pumping speed
	(Photon/s/m)	$(Torr \times l/s/m)$	(Days at 100mA)
TA	7.80×10^{16}	2.21×10^{-10}	89
SA	3.42×10^{16}	9.68×10^{-11}	203
NA	3.91×10^{16}	1.11×10^{-10}	178
TB	6.49×10^{16}	1.84×10^{-10}	107

Brief Summary – More to Come

- Used Cornell ERL vacuum system conceptual design as a model for ILC DR vacuum system cost estimation
- Similar vacuum pumping for arcs and drifts is figured in the ILC DR design.
- For locations with very high dynamic gas load (such as the photon absorbers for the wigglers), high capacity TiSPs are used.
- See more from Joe's presentations