CO2 cooling for FPCCD Vertex Detector

Yasuhiro Sugimoto
KEK
2012/4/24 @KILC2012

FPCCD vertex detector

- Fine Pixel CCD
 - Pixel size ~ 5μm
 - Fully depleted epitaxial layer
 - Multi-port readout
 - Read out between trains (No power pulsing)
- FPCCD vertex detector
 - Double-sided ladder
 - Sensors and front-end ASICs inside a cryostat
 - Power consumption > 50W inside the cryostat

Operation temperature

- Optimization for radiation tolerance
 - Charge transfer inefficiency (CTI) due to radiation damage is a function of temperature
 - A simple simulation of CTI based on Shockley-Read-Hall theory shows around -40°C is optimal

Cooling options

- Cold nitrogen gas
 - Flow rate of ~1 L/s is necessary to extract 50W power with ∆T=40K
 - Thick cooling tube would be necessary
- Two-phase CO2
 - Flow rate of \sim 0.15 g/s is necessary to extract 50W power with Δ T \sim 0K (latent heat)
 - Thin tube is OK →
 - Less material budget
 - Less space between forward Si disks and beam pipe

Advantages of CO2 cooling

- Large latent heat ~300 J/g (x3 of PFC)
- High pressure ~1 MPa @-40°C
 - Less evaporated gas volume
 - Less temperature drop due to pressure drop
- Much less Global Warming Potential

	CO2	C2F6	C3F8
Latent heat @-40C	321 J/g	~100 J/g	~110 J/g
Critical point	31.1°C	19.7°C	71.9°C
Pressure @-40C	1 MPa	~0.5 MPa	~0.1 MPa
GWP	1	9200	7000

CO2 cooling for FPCCD VTX

- Cooling tube is attached to VTX end-plate and heat produced by CCD output amp and ASIC is removed by conduction through CFRP ladder (simulation study for thermal design is necessary)
- Return line of CO2 will be used to cool the electronics outside the cryostat (~200W/side)
- Inner support tube should be airtight and filled with dry air/nitrogen in order to prevent condensation on the CO2 tube

CO2 blow system

- CO2 collaboration in Japan
 - ILC VTX, ILC TPC, Belle-II VTX, and KEK cryogenic group
 - We constructed "blow system" and temperature was successfully controlled between -40°C and +15°C

CO2 cooling test mockup

- Acril pipe filled with dry air, which mimics ILD inner support tube
- Purpose
 - Demonstrate that a bare cooling tube can be used in the dry air: No condensation, small heat penetration
 - Measure pressure drop (temperature drop) through a thin tube

CO2 cooling test mockup

Test results (1)

- Dew point of <-45°C can be easily achieved within 5 hours with the dry air flow rate of 5 L/min
- No condensation was observed on the 2 mm tube with -40°C 2-phase CO2

Test results (2)

- Heat penetration
 - Heat penetration was obtained from the difference of flow rates when "dry-out" occurs at different points
 - Dry out can be observed as a sudden rise of temperature
 - Flow rate difference of 0.03g/s caused dry-out point difference of 50cm
 - → heat penetration ~ 20 W/m

Future plan (1)

Cooling test of dummy ladder/end-plate

Future plan (2)

- Blow system → Circulating system
 - We will conduct R&D on a 2-phase CO2 cooling system which circulates CO2 using a compressor
 - One compressor may be used for different subdetectors (different temperature)

Summary

- Two-phase CO2 cooling is a very attractive option for the cooling system of FPCCD vertex detector
- It has been demonstrated that 2mm cooling tube can be used in dry-air atmosphere without condensation and with reasonably small heat penetration of 20 W/m @-40°C
- We will conduct R&D on the circulating CO2 cooling system using a compressor