

SuperKEKB Vacuum System

- for the positron ring -

Y. Suetsugu KEKB Vacuum Group

- Outline
- Design and production status of key components
 - Beam pipes for arc section
 - Beam pipes for wiggler section
 - Pumps
 - Bellows chambers, Gate valves
- Approximate costs
- Summary

SuperKEKB

- SuperKEKB is an electron-positron double ring collider in Tsukuba, Japan.
 - Electron ring (HER; High Energy Ring): 7 GeV
 - Positron ring (LER; Low Energy Ring): 4 GeV
 - Circumference: 3016 m
- Main features
 - Goal luminosity:
 8 × 10³⁵ cm⁻²s⁻¹
 - High beam current;
 - LER: 3.6 A, HER: 2.6 A
 - Short bunch length
 - $\sigma_z = 5-6 \text{ mm}$)
 - Short bunch spacing
 - 4 ns, 2500 bunches
 - Low beam emittances
 - $\varepsilon_x = 3.2 2.4 \text{ nm}$
 - ε_{V} =13 8.4 pm

SuperKEKB Vacuum System

- These features make strenuous demand on the vacuum system
 - Endurance for high power synchrotron radiation (SR) from the high beam currents
 - Low beam impedance for beam pipes and the components to avoid single and multi-bunch instabilities
 - Suppression of electron cloud instability in the positron ring
 - Suppression of ion instability in the electron ring
- Very similar issues for damping rings for the damping rings of ILC.
- Here briefly reported are the designs of some key vacuum components for the SuperKEKB positron ring, and their approximate costs.

Design of SuperKEKB Vacuum System

 The designs of most of key components have been finished, and the production of them have started in full swing since last year.

Beam pipes:

- Beam pipes with antechambers
 - Aluminum part
 - Groove surface (in bending magnets)
 - Clearing electrode (beam pipes for arc section)
 - Copper beam pipes for wiggler section
- With countermeasures against electron cloud effects
 - TiN coating for most in wiggler magnets)
 - Solenoid (drift region)

Pumps

- Distributed pumping system using NEG strips
- Bellows chambers and gate valves
 - Comb-type RF shield: High HOM shielding property

Beam pipes for arc section _1

- Beam pipes with antechambers
 - Small effect of photoelectrons, low beam impedance, low SR power density at side wall
 - To be fit to the existing magnets.
 - Same cross section for flanges.
- Aluminum alloy is available for arc section

Beam pipes for arc section _2

- Rough surface at the side wall
 - Suppress the photon reflection
 - Ra~20

- Grooved surface in bending magnets
 - Reduce effective SEY structurally
 - Expected reduction of electron density by factors
 - Formed by extrusion method
 - With TiN coating

 $\begin{array}{c|c}
B & & & \\
& & \\
& & \\
& & \\
\end{array}$ (Depth) d

by L. Wang et al.

Valley: R0.1~0.12

Top: R0.15

Angle: 18~18.3°

6

Beam pipes for arc section _3

Beam pipes for wiggler section _1

- Beam pipes with antechambers
- Copper is required due to intense SR power
 - Formed by cold drawing method
 - Copper alloy flanges (CrCu)

Beam pipes for wiggler section _2

- Clearing electrode in wiggler magnets
 - Attract electrons by electrostatic field
 - Very thin electrode has been developed
 - 0.1 mm tungsten on 0.2 mm Al₂O₃
 - Expected reduction in electron density around beam of ~1/100

9

Beam pipes for wiggler section _3

Production

- Nikko and Oho straight section
- Type-S and Q 223 m
- Type-S has two clearing electrodes.
- Type-Q has TiN coating.
- Beam pipes at the downstream of wiggler should be also made of copper.

Pumps _1

- Main Pump: NEG strips
- Arc: Inserted in one of antechambers (inside of the ring)
 - Distributed pumping system
 - Effective pumping speed of ~ 80 l/s/m.
- Straight: Lumped pump ports at both antechambers
- Ion pumps: Placed every 10 m as an auxiliary pump

Straight Section (Wiggler)

Pumps _2

Production

- Three layers of NEG strips "ST707 3D"
- Activated by micro-heaters (sheath heaters)
- Screens between pump and beam (ϕ 4 mm)
- NEG strips (3m x 2400 pcs.), Heaters (1070 pcs.), transformer (1105 pcs.), Feed-though (950 pcs.)

Bellows chambers and gate valves _1

- Bellows and gate valves with comb-type RF-shield
 - Sure RF shielding, thermally strong
 - Applicable to antechamber scheme
 - Finger-type for some cases, if flexibility is required.

Bellows chambers and gate valves _2

- Production
- Bellows chambers
 - Aluminum alloy for arc section (690)
 - Copper for wiggler and straight section (125)
- Gate valves 24
 - Stainless steel (Ag coating)+ Comb shield (copper)

TiN coating system _1

- TiN coating in KEK, followed by pre-baking
 - Magnetron sputtering
 - 5 sets for Q and S-types, and 2 sets for B-types
- Construction is in progress.

