

report on the CLIC physics and detector study

Lucie Linssen, CERN on behalf of the CLIC physics and detector study

Lucie Linssen, KILC workshop Daegu, April 23 2012

Outline

- CLIC conceptual design report
- CLIC accelerator introduction
- Physics at CLIC
- Experimental conditions
- Detector requirements
- Detector concepts CLIC_SiD and CLIC_ILD
- Background suppression at CLIC
- Detector benchmark studies
- Physics and Detectors in next phase 2012-2016
- CLIC energy staging
- Summary and outlook

CLIC, in just a few words

Linear collider, e⁺e⁻ collisions, high luminosity

- Based on 2-beam acceleration scheme
 - •Generation of RF power through lowenergy, high-intensity drive beam
- •Gradient 100 MV/m, room temperature
- •Energy: from few-hundred GeV upgradable in steps up to 3 TeV; R&D has focused on 3 TeV

 Two detector concepts CLIC ILD and CLIC SiD •Detector study has focuses on 3 TeV, lower \sqrt{s} energies now under study

Current project stage:

Conceptual Design Report (CDR) stage is just finished for accelerator and detector

CLIC conceptual design report(s)

clc

CLIC conceptual design report (CDR):

1. Accelerator

Officially presented to CERN SPC, final text editing still ongoing http://clic-study.org/accelerator/CLIC-ConceptDesignRep.php

- Physics and Detectors => published
 <u>http://arxiv.org/abs/1202.5940</u>
- 3. Strategic CDR volume (energy staging, cost, power...) In progress, foreseen summer 2012

The physics & detector CDR was reviewed in October 2011: https://edms.cern.ch/document/1172721

Signatories list of the CLIC CDR https://indico.cern.ch/conferenceDisplay.py?confld=136364

Currently 1375 signatories

Participants CLIC CDR detector studies

CLIC physics & detector CDR studies were carried out within a broad international Linear Collider physics and detector effort, drawing on existing ILC (etc.) studies

Lucie Linssen, KILC workshop Daegu, April 23 2012

CLIC&CTF3 accelerator collaboration

CLIC multi-lateral collaboration - 44 Institutes from 22 countries

ACAS (Australia) Aarhus University (Denmark) Ankara University (Turkey) Argonne National Laboratory (USA) Athens University (Greece) **BINP** (Russia) CERN CIEMAT (Spain) Cockcroft Institute (UK) ETH Zurich (Switzerland) FNAL (USA)

Gazi Universities (Turkey) Helsinki Institute of Physics (Finland) IAP (Russia) IAP NASU (Ukraine) IHEP (China) INFN / LNF (Italy) Instituto de Fisica Corpuscular (Spain) IRFU / Saclay (France) Jefferson Lab (USA) John Adams Institute/Oxford (UK) Joint Institute for Power and Nuclear Polytech. Univ. of Catalonia (Spain) Research Source International State Polytech. Univ. of Catalonia (Spain)

John Adams Institute/RHUL (UK) JINR (Russia) Karlsruhe University (Germany) **KEK (Japan)** LAL / Orsay (France) LAPP / ESIA (France) NIKHEF/Amsterdam (Netherland) NCP (Pakistan) North-West. Univ. Illinois (USA) Patras University (Greece)

PSI (Switzerland) RAL (UK) RRCAT / Indore (India) SLAC (USA) Sincrotrone Trieste/ELETTRA (Italy) Thrace University (Greece) Tsinghua University (China) University of Oslo (Norway) University of Vigo (Spain) Uppsala University (Sweden) UCSC SCIPP (USA)

CLIC Layout at 3 TeV

design issues addressed in acc. CDR

Main li	nac gradient	_	Accelerating structure
iviaili ii	IIAL GIAUICIIL		/ letter atting structure

Drive beam scheme

- Drive beam generation
- PETS (power extraction and transfer structures)
- Two beam acceleration
- Drive beam deceleration

Luminosity

- Main beam emittance generation, preservation and focusing
- Alignment and stabilisation

Operation and Machine Protection System (robustness)

achieved gradient

two-beam acceleration

accelerator achievements in CDR

Ongoing test close to or on target Main linac gradient Uncertainty from beam ! 'ing Generation tested, elerate test Drive beam scheme beam, decelerati cted dion, reliability, Improvemer' ation (more PETS) to losses, mr come D like an ambitious light Luminosity show stopper ent system principle demonstrated *soilisation system developed,* v for the penchmarked, better system in pipeline Simulations seem on or close to the target Start-up sequence defined Operation Most critical failure studied Machine P First reliability studies Low energy operation developed

CLIC physics potential

CLIC physics potential is complementary to LHC

Beyond LHC discovery reach:

- e+e- collisions give access to additional physics pocesses
 - weakly interacting states (e.g. slepton, chargino, neutralino searches)
 - more clean conditions than in LHC
- Defined initial state + more precise measurements

Examples highlighted in the CDR

- Higgs physics (SM and non-SM)
- Тор
- SUSY
- Higgs strong interactions
- New Z' sector
- Contact interactions
- Extra dimensions
- Enhancement with polarised beams

•

SM Higgs

Lucie Linssen, KILC workshop Daegu, April 23 2012

heavy Higgs searches

CLIC access to SUSY heavy Higgs searches

resolving new physics models

Precision measurements at CLIC allow to distinguish between models of new physics, e.g. following first observations at LHC

e.g. CLIC resolving power for SUSY breaking models

Lucie Linssen, KILC workshop Daegu, April 23 2012

Higgs compositeness

Allows to probe Higgs compositeness at the 30 TeV scale for 1 ab⁻¹ at 3 TeV (60 TeV scale if combined with single Higgs production)

Lucie Linssen, KILC workshop Daegu, April 23 2012

physics reach, short overview

Discovery reach (indicative) for new physics:

New particle	collider: £:	LHC14 100 fb ⁻¹	SLHC 1 ab ⁻¹	LC800 500 fb ⁻¹	CLIC3 1 ab ⁻¹
squarks [TeV]		2.5	3	0.4	1.5
sleptons [TeV]		0.3	-	0.4	1.5
Z' (SM couplings) [TeV]		5	7	8	20
2 extra dims M _D [TeV]		9	12	5-8.5	20-30
TGC (95%) (λ_{γ} coupling)		0.001	0.0006	0.0004	0.0001
μ contact scale [TeV]		15	-	20	60
Higgs compos. scale [TeV]		5-7	9-12	45	60

physics aims => detector needs

CLIC machine environment (1)

	CLIC at 3 TeV	
L (cm ⁻² s ⁻¹)	5.9×10 ³⁴	
BX separation	0.5 ns	Crives timing
#BX / train	312	requirements
Train duration (ns)	156	for CLIC detector
Rep. rate	50 Hz	
σ _x / σ _y (nm)	≈ 45 / 1	very small beam size
σ _z (μm)	44	very sman beam size

CLIC machine environment (2)

UN/9 **Beamstrahlung** → important energy losses right at the interaction point 0.015 3 TeV Full luminosity: ٧s $5.9 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ 0.01 energy spectrum Of which in the 1% most energetic part: $2.0 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ 0.005 Most physics processes are studied well above production threshold => profit from full luminosity 0

Needs suppression in data

Lucie Linssen, KILC workshop Daegu, April 23 2012

Coherent e⁺e⁻ pairs

Incoherent e⁺e⁻ pairs

3.2 evts. per BX

 $\gamma\gamma \rightarrow$ hadrons

• 7 x 10⁸ per BX, very forward

• 3 x 10⁵ per BX, rather forward

main background in calorimeters

CLIC_ILD and CLIC_SiD

Two general-purpose CLIC detector concepts Based in initial ILC concepts (ILD and SiD) Optimised and adapted to CLIC conditions

CLIC_ILD

7 m

CLIC_SiD

Engineering / push-pull / forward region

Lucie Linssen, KILC workshop Daegu, April 23 2012

vertex detector

- ~20×20 μm pixel size
- 0.2% X₀ material par layer <= very thin !
 - Very thin materials/sensors
 - Low-power design, power pulsing, air cooling
- Time stamping 10 ns
- Radiation level $<10^{11} n_{eq} \text{ cm}^{-2} \text{ year}^{-1} <= 10^4 \text{ lower than LHC}$

Challenging ongoing R&D project

see talk D. Dannheim 24/4 ACFA trackers

see talk H. Gerwig24/4 ACFA trackers

CLIC_ILD w and CLIC_SiD >> tracker

all-silicon tracker in 5 Tesla field 1.3 m 577 1063 16290 777 1344chip on sensor

calorimetry and PFA

Jet energy resolution and background rejection drive the overall detector design

=> => fine-grained calorimetry + Particle Flow Analysis (PFA)

HCAL: Several technology options Tungsten (barrel), steel (endcap) cell sizes 9 cm² (analog) or 1 cm² (digital) 60-75 layers in depth Total depth 7.5 Λ_i

ECAL:

Si or Scint. (active) + Tungsten (absorber) cell sizes 13 mm² or 25 mm² 30 layers in depth

calorimetry and PFA

jet energy resolution (no jet clustering, no background overlay)

impact of $\gamma\gamma \rightarrow$ hadrons

- Dominating background
- For entire bunch-train (312 BXs)
 - 5000 tracks giving total track momentum : 7.3 TeV
 - Total calorimetric energy (ECAL + HCAL) : 19 TeV
- Mostly low p_T particles

background suppression at CLIC

- Cuts depend on particle-type, p_T and detector region
- Allows to protect high- p_T physics objects

╋

• Use well-adapted jet clustering algorithms

• Making use of LHC experience (FastJet)

time window / time resolution

The event reconstruction software uses:

Subdetector	Reconstruction window	hit resolution		
ECAL	10 ns	1 ns		
HCAL Endcaps	10 ns	1 ns		
HCAL Barrel	100 ns	1 ns		
Silicon Detectors	10 ns	$10/\sqrt{12}$ ns		
TPC	entire bunch train	n/a		
t ₀ physics event (offline)				

Translates in precise timing requirements of the sub-detectors

combined p_T and timing cuts

$e^+e^- \rightarrow H^+H^- \rightarrow t\bar{b}b\bar{t} \rightarrow 8 \text{ jets}$

1.2 TeV background in reconstruction time window

100 GeV background after tight cuts

jet clustering (example)

summary of CDR benchmark studies (1)

Table 12.19: Summary table of the CLIC benchmark analyses results. All studies at a centre-of-mass energy of 3 TeV are performed for an integrated luminosity of 2 ab^{-1} . The study at 500 GeV assumes an integrated luminosity of 100 fb⁻¹.

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Observable	Unit	Gene- rator value	Stat. uncert- ainty
3.0	Light Higgs production	$\begin{array}{l} h \rightarrow b\overline{b} \\ h \rightarrow c\overline{c} \\ h \rightarrow \mu^+ \mu^- \end{array}$		σ × Bran- ching ratio	fb	285 13 0.12	0.22% 3.2% 15.7%
3.0			I	Mass Width	GeV GeV	902.4	0.3% 31%
5.0	Heavy Higgs production	114 -7 0000	п	Mass Width	GeV GeV	742.0	0.2% 17%
		$H^+H^- \rightarrow t\overline{b}b\overline{t}$	I	Mass Width	GeV GeV	906.3	0.3% 27%
]]	п	Mass Width	GeV GeV	747.6	0.3% 23%	
3.0	Production of right-handed squarks	$\widetilde{q}_{R}\widetilde{q}_{R} \rightarrow q \overline{q} \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0}$	Ι	Mass σ see t	GeV fb alk F. S	1123.7 1.47 imon 24/	0.52% 4.6% 4 ACFA trackers

summary of CDR benchmark studies (2)

		$\widetilde{\mu}^+_R \widetilde{\mu}^R \rightarrow \mu^+ \mu^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$		$\sigma \\ ilde{\ell} mass \\ ilde{\chi}_1^0 mass$	fb GeV GeV	0.72 1010.8 340.3	2.8% 0.6% 1.9%
3.0	Sleptons production	$\widetilde{e}^+_R \widetilde{e}^R \to e^+ e^- \tilde{\chi}^0_1 \tilde{\chi}^0_1$	п	σ ℓ mass $\tilde{\chi}_1^0$ mass	fb GeV GeV	6.05 1010.8 340.3	0.8% 0.3% 1.0%
		$\begin{array}{l} \widetilde{e}^+_L \widetilde{e}^L \rightarrow \widetilde{\chi}^0_1 \widetilde{\chi}^0_1 e^+ e^- hh \\ \widetilde{e}^+_L \widetilde{e}^L \rightarrow \widetilde{\chi}^0_1 \widetilde{\chi}^0_1 e^+ e^- Z^0 Z^0 \end{array}$		σ	fb	3.07	7.2%
		$\widetilde{\nu}_e\widetilde{\nu}_e \rightarrow \tilde{\chi}_1^0\tilde{\chi}_1^0 e^+e^-W^+W^-$		σ $\ell \text{ mass}$ $\tilde{\chi}_1^{\pm} \text{ mass}$	fb GeV GeV	13.74 1097.2 643.2	2.4% 0.4% 0.6%
3.0	Chargino and	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 W^+ W^-$	п	$\tilde{\chi}_1^{\pm}$ mass σ	GeV fb	643.2 10.6	1.1% 2.4%
5.0	neutralino production	$\tilde{\chi}_2^0\!\tilde{\chi}_2^0 \mathop{\rightarrow} h^0/Z^0\!h^0/Z^0\!\tilde{\chi}_1^0\!\tilde{\chi}_1^0$		$ ilde{\chi}^0_2$ mass σ	GeV fb	643.1 3.3	1.5% 3.2%
0.5	tt production	$t\overline{t} \rightarrow (q\overline{q}b)(q\overline{q}b)$		Mass Width	GeV GeV	174 1.37	0.046% 16%
		$ \begin{split} t \overline{t} &\to (q \overline{q} b) (\ell \nu b), \\ \ell &= e, \mu \end{split} $		Mass Width	GeV GeV	174 1.37	0.052% 18%

Physics/detector objectives: 2012-2016

Implementation study and technical demonstration phase

Physics studies, following up on 7-8 TeV and 14 TeV LHC results Exploration of SM physics (incl. Higgs, top) and reach for new physics Adaptation of strategy for <u>CLIC energy staging</u> and luminosity levels

Detector optimisation

Lots of work in common with in with ILC ! General detector optimisation + simulation studies in close relation with detector R&D

R&D: Implementation examples *demonstrating* the required functionality

Vertex detector

Demonstration module that meets the requirements

Main tracker

Demonstration modules, including manageable occupancies in the event reconstruction **Calorimeters**

Demonstration modules, technological prototypes + addressing control of cost

Electronics

Demonstrators, in particular in view of power pulsing

Magnet systems

Demonstrators of conductor technology, safety systems and moveable service lines

Engineering and detector integration

Engineering design and detector integration harmonized with hardware R&D demonstrators

Challenging detector technologies, considered feasible in a 5-year R&D program

CLIC energy staging

- Majority of CDR studies done at vs = 3.0 TeV
 - most challenging for beam-induced backgrounds in the detector
 - ultimate physics reach
- Staged construction and operation of CLIC
 - Address SM physics (Higgs, top, etc.) at lower-E stage
 - Explore new physics and ultimate physics goal at higher-E stage

New benchmark studies, staged energy

Currently ongoing benchmark studies with staged energies (In addition to studies already reported in the CDR)

Stage 1: E_{cm} = 500 GeV machine (+350 GeV running) \mathcal{L}_{int} = 500 fb⁻¹ Higgs mass measurement (500 GeV, 350 GeV) t-tbar threshold scan (350 GeV)

Stage 2: $E_{cm} = 1.4 \text{ TeV}$ $\mathcal{L}_{int} = 1.5 \text{ ab}^{-1}$ triple Higgs coupling SUSY studies with "Model 3" sleptons (inc. stau), gauginos

Stage 3: $E_{cm} = 3 \text{ TeV}$ $\mathcal{L}_{int} = 2 \text{ ab}^{-1}$ triple Higgs coupling

see talk F. Simon 24/4 ACFA trackers

CLIC Implementation – in stages?

Potential Staged Parameters

Preliminary, implementation options still under discussion

parameter	symbol			
centre of mass energy	E _{cm} [GeV]	500	1400	3000
luminosity	${\cal L}~[10^{34}~{ m cm^{-2}s^{-1}}]$	2.3	3.2	5.9
luminosity in peak	$\mathcal{L}_{0.01} \; [10^{34} \; ext{cm}^{-2} ext{s}^{-1}]$	1.4	1.3	2
gradient	G [MV/m]	80	80/100	100
site length	[km]	13	28	48.3
charge per bunch	N [10 ⁹]	6.8	3.7	3.7
bunch length	$\sigma_{\sf z} \; [\mu{\sf m}]$	72	44	44
IP beam size	$\sigma_{\sf x}/\sigma_{\sf y}~[{\sf nm}]$	200/2.26	pprox 60/1.5	pprox 40/1
norm. emittance	$\epsilon_{\rm x}/\epsilon_{\rm y} \; [{\rm nm}]$	2400/25	660/20	660/20
bunches per pulse	n _b	354	312	312
distance between bunches	$\Delta_{\sf b} [\sf ns]$	0.5	0.5	0.5
repetition rate	f _r [Hz]	50	<mark>5</mark> 0	50
est. power cons.	P _{wall} [MW]	271	361	582

possible E_{cm} / luminosity scenario

This is just an example

Reducing the instantaneous luminosity reduces both power and yearly energy Finer energy scans might well be needed within one stage

summary and outlook

Good results on feasibility of CLIC accelerator technologies, and progress continues

CLIC has a large physics potential, complementary to LHC

Physics can be measured with high precision, despite challenging background conditions

Physics can be explored in a staged approach: few-hunred GeV – 3 TeV

Plans for the next phase 2012 – 2016 are well underway

With many thanks to all those who participated, in particular giving credit to prior ILC work on physics and detectors who made CLIC CDR work possible

SPARE SLIDES

Lucie Linssen, KILC workshop Daegu, April 23 2012

details of forward detector region

two experiments in push-pull

PFA jet performance study

Fig. 12.9: Left: Energy distribution of the reconstructed W with an energy of 500 GeV for various amounts of $\gamma\gamma \rightarrow$ hadrons background overlaid (no background, 60 BX and 2×60 BX) and for different timing cuts (no cut and tight timing cuts). Right: Energy resolution of the reconstructed W as a function of the W energy for various amounts of $\gamma\gamma \rightarrow$ hadrons background overlaid. In case of background the tight timing cuts are used. The results in both figures are obtained for the CLIC_SiD detector model.

PFO-based timing cuts

Region p _t range		Time cut		
	Photons			
central	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 2.0 nsec		
$(\cos\theta \le 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec		
forward	$0.75 { m ~GeV} \le p_t < 4.0 { m ~GeV}$	t < 2.0 nsec		
$(\cos \theta > 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec		
Neutral hadrons				
central	$0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$	t < 2.5 nsec		
$(\cos\theta \le 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.5 nsec		
forward	$0.75 { m ~GeV} \le p_t < 8.0 { m ~GeV}$	t < 2.0 nsec		
$(\cos \theta > 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec		
Charged PFOs				
all	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 3.0 nsec		
$0 \; { m GeV} \le p_t < 0.75 \; { m GeV} \qquad t < 1.5 \; { m n}$				

- Track-only minimum *p*_t: 0.5 GeV
- Track-only maximum time at ECAL: 10 nsec

CLIC two-beam acceleration scheme

Tunnel implementations (laser straight)

Lake Geneva P Geneva

Central MDI & Interactio

CLIC project timeline

From 2016 – Project Implementation phase, including an initial project to lay the grounds for full construction:

- CLIC 0 a significant part of the drive beam facility: prototypes of hardware components at real frequency, final validation of drive beam quality/main beam emittance preservation, facility for reception tests - and part of the final project)
- Finalization of the CLIC technical design, taking into account the results of technical studies done in the previous phase, and final energy staging scenario based on the LHC Physics results, which should be fully available by the time
- Further industrialization and pre-series production of large series components for validation facilities
- Other system studies addressing luminosity issues (emittance conservation)
- **Environmental Impact Study**

DEL AN

Final CLIC CDR and

Strategy Update

feasibility established,

also input for the Eur.

DRIVE BEA

LINAC

2012 - 2016

2016 - 2022

2011-2016 – Goal: Develop a project implementation plan for a Linear Collider:

- Addressing the key physics goals as emerging from the LHC data
- With a well-defined scope (i.e. technical implementation and operation model, • energy and luminosity), cost and schedule
- With a solid technical basis for the key elements of the machine and detector •
- Including the necessary preparation for siting the machine
- Within a project governance structure as defined with international partners

CLIC project construction in stages, making use of CLIC 0

~ 2020 onwards

LC workshop Daegu, April 23 2012

System test and initial step for CLIC

parameter	unit	CLIC	CTF3
accelerated current	Λ	1 2	35
		4.2	5.5
combined current	A	101	28
final energy	MeV	2400	≈ 120
accelerated pulse length	$\mu { m s}$	140	1.2
final pulse length	ns	240	140
acceleration frequency	GHz	1	3
final bunch frequency	GHz	12	12

Objectives beyond 2016:

- Final components at some scale
- Full currents
- Needed for initial phase of project (receptions and conditioning of final modules before installation)

Tentative beam parameters

Drive beam (TBA entrance)

Energy	480	MeV	
Emittance, norm. rms	≤ 150	um	
Energy spread, rms	~1%		
Bunch length, rms	1	mm	(3.6 ps)
Bunch charge	8.4	nC	
Pulse Current	101	А	(4.2 A in DBA)
Pulse length	244	ns	(~ 6 us in DBA, option for full pulse length – 140 us)
Rep. Rate	50	Hz	
Probe beam (end of TBA)			
Energy	6.5 - 6.75	GeV	(250 to 500 MeV injector exit, 6.25 GeV acceleration)
Emittance, norm. rms	1 – 20	um	(both horizontal and vertical)
Energy spread, rms	0.1-1 %		
Bunch length, rms	~ 0.5	mm	(1.8 ps – may changed by adding a bunch compressor)
Bunch charge	0.2 - 1	nC	
Pulse Current	0.4 – 2	А	
Pulse length	up to 156 ns		(possibility of single bunch)
Rep. Rate	up to 50	Hz	

A possible energy/luminosity scenario

With a model (see figure for one example) for energies and luminosities, and assumptions about running scenarios (see below), one can extract power and energy estimates as function of time (next slide).

For each value of CM energy:

- 177 days/year of beam time
- 188 days/year of scheduled and fault stops
- First year

-

_

- 59 days of injector and one-by-one sector commissioning
- 59 days of main linac commissioning, one linac at a time
- 59 days of luminosity operation
- Quoted power : average over the three periods
- All along : 50% of downtime
- Second year
 - 88 days with one linac at a time and 30 % of downtime
 - 88 days without downtime
 - Quoted power : average over the two periods
- Third year
 - Still only one e+ target at 0.5 TeV, like for years 1 & 2
 - Nominal at 1.5 and 3 TeV
- Power during stops (scheduled, fault, downtime) :
 - (40 MW, 45 MW, 60 MW) at (0.5, 1.5, 3) TeV, respectively

detector benchmark studies for CDR

Full physics simulation and reconstruction studies with beam background overlay ($\gamma\gamma =>$ hadrons)

Choose six channels, with emphasis on mapping various crucial aspects of detector performance (jet measurement, missing energy, isolated leptons, flavour tagging etc.)

Lucie Linssen, KILC workshop Daegu, April 23 2012

slepton production

Slepton production at CLIC very clean SUSY "model II": slepton masses ~ 1 TeV Channels studied include

$$\begin{array}{l} \bullet \ e^+e^- \rightarrow \tilde{\mu}^+_R \tilde{\mu}^-_R \rightarrow \mu^+ \mu^- \, \tilde{\chi}^0_1 \, \tilde{\chi}^0_1 \\ \bullet \ e^+e^- \rightarrow \tilde{e}^+_R \tilde{e}^-_R \rightarrow e^+e^- \, \tilde{\chi}^0_1 \, \tilde{\chi}^0_1 \\ \bullet \ e^+e^- \rightarrow \tilde{\nu}_e \tilde{\nu}_e \rightarrow e^+e^- W^+ W^- \, \tilde{\chi}^0_1 \, \tilde{\chi}^0_1 \end{array}$$

Leptons and missing energy Masses from analysis of endpoints of energy spectra

gaugino pair production

SUSY "model II"

SUSY "model II":

$$m(\tilde{\chi}_{1}^{0}) = 340 \text{ GeV} \qquad m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{+}) \approx 643 \text{ GeV}$$
Pair production and decay:

$$e^{+}e^{-} \rightarrow \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} W^{+}W^{-}$$

$$e^{+}e^{-} \rightarrow \tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0} \rightarrow \text{hh} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} 82\%$$

$$e^{+}e^{-} \rightarrow \tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0} \rightarrow \text{Zh} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} 17\%$$

$$m(\tilde{\chi}_{1}^{\pm}) : \pm 7 \text{ GeV}$$

$$m(\tilde{\chi}_{2}^{0}) : \pm 10 \text{ GeV}$$

$$m(\tilde{\chi}_{1}^{0}) : \pm 3 \text{ GeV}$$

$$m(\tilde{\chi}_{1}^{0}) : \pm 3 \text{ GeV}$$

$$m(\tilde{\chi}_{1}^{0}) : \pm 3 \text{ GeV}$$

top mass at vs 500 GeV

Study top production at $\sqrt{s} = 500 \text{ GeV}$ under CLIC background conditions • fully hadronic $t\bar{t} \rightarrow (bq\bar{q})(\bar{b}q\bar{q})$ and semi-leptonic $t\bar{t} \rightarrow (bq\bar{q})(\bar{b}\ell\nu)$

Lucie Linssen, KILC workshop Daegu, April 23 2012

comparison CLIC <>> LHC detector

In a nutshell:

CLIC detector:

•High precision:

Jet energy resolution

=> fine-grained calorimetry

Momentum resolution

Impact parameter resolution

Overlapping beam-induced background:

- •High background rates, medium energies
- •High occupancies
- Cannot use vertex separation
- •Need very precise timing (1ns, 10ns)

•"No" issue of radiation damage (10⁻⁴ LHC)

•Beam crossings "sporadic"

•No trigger, read-out of full 156 ns train

LHC detector:

•Medium-high precision:

Very precise ECAL (CMS)Very precise muon tracking (ATLAS)

•Overlapping minimum-bias events:

- High background rates, high energiesHigh occupancies
- •Can use vertex separation in z
- •Need precise time-stamping (25 ns)
- •Severe challenge of radiation damage
- •Continuous beam crossings
- Trigger has to achieve huge data reduction